Suppose you have been given the task of distilling a mixture of hexane + toluene. Pure hexane has a refractive index of 1.375 and pure toluene has a refactive index of 1.497. You collect a distillate sample which has a refractive index of 1.401. Assuming that the refractive index of the hexane + toluene mixture varies linearly with mole fraction, what is the mole fraction of hexane in your sample?

Respuesta :

Given:

refractive index of pure hexane, [tex]\mu_{h}[/tex] = 1.375

refractive index of pure hexane, [tex]\mu_{t}[/tex] = 1.497

refractive index of mixture, [tex]\mu[/tex] = 1.401

Formula used:

As refractive index here, behaves like a colligative prop. then using the following formula:

[tex]\mu = n_{h}\mu_{h} + n_{t}\mu_{t}[/tex]                         (1)

where,

[tex]\n_{h}[/tex] = hexane  mole fraction

[tex]\n_{t}[/tex] = toulene  mole fraction

[tex]\n_{h}[/tex] + [tex]\n_{t}[/tex] = 1                                      (2)

Solution:

Now, using given formula from eqn (1)

[tex]\mu = n_{h}\mu_{h} + n_{t}\mu_{t}[/tex]

[tex]1.401 = 1.375\times n_{h}+ 1.497\times n{t}[/tex]              (3)

Multiply eqn (2) by 1.375, we get:

[tex]1.375\times \n_{h}[/tex] + 1.375\times [tex]\n_{t}[/tex] = 1.375         (4)

Now, solving eqn  (3) and (4):

[tex]\n_{t}[/tex] = 0.213

Substituting the value of [tex]\n_{t}[/tex] = 0.213 in eqn (1), we get:

[tex]\n_{h}[/tex] = 1 - 0.213

[tex]\n_{h}[/tex] = 0.787

Therefore, mole fraction of hexane in the sample is [tex]\n_{h}[/tex] = 0.787