Respuesta :
Answer:
n = 1810
A = 25 mm
Explanation:
Given:
Lateral force amplitude, F = 25 N
Frequency, f = 1 Hz
mass of the bridge, m = 2000 kg/m
Span, L = 144 m
Amplitude of the oscillation, A = 75 mm = 0.075 m
time, t = 6T
now,
Amplitude as a function of time is given as:
[tex]A(t)=A_oe^{\frac{-bt}{2m}}[/tex]
or amplitude for unforce oscillation
[tex]\frac{A_o}{e}=A_oe^{\frac{-b(6T)}{2m}}[/tex]
or
[tex]\frac{6bt}{2m}=1[/tex]
or
[tex]b=\frac{m}{3T}[/tex]
Now, provided in the question Amplitude of the driven oscillation
[tex]A=\frac{F_{max}}{\sqrt{(k-m\omega_d^2)+(b\omega_d^2)}}[/tex]
the value of the maximum amplitude is obtained [tex](k=m\omega_d^2)[/tex]
thus,
[tex]A=\frac{F_{max}}{(b\omega_d}[/tex]
Now, for n people on the bridge
Fmax = nF
thus,
max amplitude
[tex]0.075=\frac{nF}{((\frac{m}{3T})2\pi}[/tex]
or
n = 1810
hence, there were 1810 people on the bridge
b)[tex]A=\frac{F_{max}}{(b\omega_d}[/tex]
since the effect of damping in the millenium bridge is 3 times
thus,
b=3b
therefore,
[tex]A=\frac{F_{max}}{(3b\omega_d}[/tex]
or
[tex]A=\frac{1}{(3}A_o[/tex]
or
[tex]A=\frac{1}{(3}0.075[/tex]
or
A = 0.025 m = 25 mm