Respuesta :
Answer:
D h=−6, k=−30
Step-by-step explanation:
we know that
The equation of a vertical parabola in vertex form is equal to
[tex]f(x)=a(x-h)^{2}+k[/tex]
where
a is a coefficient
(h,k) is the vertex
we have
[tex]f)x)=x^{2} +12x+6[/tex]
Convert to vertex form
Complete the square
[tex]f)x)-6=x^{2} +12x[/tex]
[tex]f)x)-6+36=(x^{2} +12x+36)[/tex]
[tex]f)x)+30=(x^{2} +12x+36)[/tex]
[tex]f)x)+30=(x+6)^{2}[/tex]
[tex]f)x)=(x+6)^{2}-30[/tex] -----> equation in vertex form
therefore
The vertex is the point (-6,-30)
h=-6, k=-30
Answer:
the answer is D. h=−6, k=−30
Step-by-step explanation:
I got it right thanks to the person who answered first