Respuesta :

Answer:

D h=−6, k=−30

Step-by-step explanation:

we know that

The equation of a vertical parabola in vertex form is equal to

[tex]f(x)=a(x-h)^{2}+k[/tex]

where

a is a coefficient

(h,k) is the vertex

we have

[tex]f)x)=x^{2} +12x+6[/tex]

Convert to vertex form

Complete the square

[tex]f)x)-6=x^{2} +12x[/tex]

[tex]f)x)-6+36=(x^{2} +12x+36)[/tex]

[tex]f)x)+30=(x^{2} +12x+36)[/tex]

[tex]f)x)+30=(x+6)^{2}[/tex]

[tex]f)x)=(x+6)^{2}-30[/tex] -----> equation in vertex form

therefore

The vertex is the point (-6,-30)

h=-6, k=-30

Answer:

the answer is D. h=−6, k=−30

Step-by-step explanation:

I got it right thanks to the person who answered first