Respuesta :
Answer:
The two solutions in exact form are:
[tex](\frac{15+\sqrt{335}}{10},\frac{5-3\sqrt{335}}{10})[/tex]
and
[tex](\frac{15-\sqrt{335}}{10},\frac{5+3\sqrt{335}}{10})[/tex].
If you prefer to look at approximations just put into your calculator:
[tex](3.3303,-4.9909)[/tex]
and
[tex](-0.3303,5.9909)[/tex].
Step-by-step explanation:
I guess you are asked to find the solution the given system.
I'm going to use substitution.
This means I'm going to plug the second equation into the first giving me:
[tex](-3x+5)^2+x^2=36[/tex] I replaced the 1st y with what the 2nd y equaled.
Before we continue solving this I'm going to expand the [tex](-3x+5)^2[/tex] using the following:
[tex](a+b)^2=a^2+2ab+b^2[/tex].
[tex](-3x+5)^2=(-3x)^2+2(-3x)(5)+(5)^2[/tex]
[tex](-3x+5)^2=9x^2-30x+25[/tex]
Let's go back to the equation we had:
[tex](-3x+5)^2+x^2=36[/tex]
After expansion of the squared binomial we have:
[tex]9x^2-30x+25+x^2=36[/tex]
Combine like terms (doing the [tex]9x^2+x^2[/tex] part:
[tex]10x^2-30x+25=36[/tex]
Subtract 36 on both sides:
[tex]10x^2-30x+25-36=0[/tex]
Simplify the 25-36 part:
[tex]10x^2-30x-11=0[/tex]
Compare this to [tex]ax^2+bx+c=0[/tex] which is standard form for a quadratic.
We should see the following:
[tex]a=10[/tex]
[tex]b=-30[/tex]
[tex]c=-11[/tex]
The formula that solves this equation for the variable [tex]x[/tex] is:
[tex]x=\frac{-b \pm \sqrt{b^2-4ac}}{2a}[/tex]
Plugging in our values for [tex]a,b, \text{ and } c[/tex] give us:
[tex]x=\frac{30 \pm \sqrt{(-30)^2-4(10)(-11)}}{2(10)}[/tex]
Simplify the bottom; that is 2(10)=20:
[tex]x=\frac{30 \pm \sqrt{(-30)^2-4(10)(-11)}}{20}[/tex]
Put the inside of square root into the calculator; that is put [tex](-30)^2-4(10)(-11)[/tex] in the calculator:
[tex]x=\frac{30 \pm \sqrt{1340}}{20}[/tex]
Side notes before continuation:
Let's see if 1340 has a perfect square.
I know 1340 is divisible by 10 because it ends in 0.
1340=10(134)
134 is even so it is divisible by 2:
1340=10(2)(67)
1340=2(2)(5)(67)
1340=4(5)(67)
1340=4(335)
4 is a perfect square so we can simplify the square root part further:
[tex]\sqrt{1340}=\sqrt{4}\sqrt{335}=2\sqrt{335}[/tex].
Let's go back to the solution:
[tex]x=\frac{30 \pm \sqrt{1340}}{20}[/tex]
[tex]x=\frac{30 \pm 2 \sqrt{335}}{20}[/tex]
Now I see all three terms contain a common factor of 2 so I'm going to divide top and bottom by 2:
[tex]x=\frac{\frac{30}{2} \pm \frac{2 \sqrt{335}}{2}}{\frac{20}{2}}[/tex]
[tex]x=\frac{15 \pm \sqrt{335}}{10}[/tex]
So we have these two x values:
[tex]x=\frac{15+\sqrt{335}}{10} \text{ or } \frac{15-\sqrt{335}}{10}[/tex]
Now we just need to find the corresponding y-coordinate for each pair of points.
I'm going to use the easier equation [tex]y=-3x+5[/tex].
Let's do it for the first x I mentioned:
If [tex]x=\frac{15+\sqrt{335}}{10}[/tex] then
[tex]y=-3(\frac{15+\sqrt{335}}{10})+5[/tex].
Let's simplify:
Distribute the -3 to the terms on top:
[tex]y=\frac{-45-3\sqrt{335}}{10}+5[/tex]
Combine the two terms; I'm going to do this by writing 5 as 50/10:
[tex]y=\frac{-45-3\sqrt{335}+50}{10}[/tex]
Combine like terms on top; the -45+50 part:
[tex]y=\frac{5-3\sqrt{335}}{10}[/tex].
So one solution point is:
[tex](\frac{15+\sqrt{335}}{10},\frac{5-3\sqrt{335}}{10})[/tex].
Let's find the other one for the other x that we got.
If [tex]x=\frac{15-\sqrt{335}}{10}[/tex] then
[tex]y=-3(\frac{15-\sqrt{335}}{10})+5[/tex].
Let's simplify.
Distribute the -3 on top:
[tex]y=\frac{-45+3\sqrt{335}}{10}+5[/tex]
I'm going to write 5 as 50/10 so I can combine the terms as one fraction:
[tex]y=\frac{-45+3\sqrt{335}+50}{5}[/tex]
Simplify the -45+50 part:
[tex]y=\frac{5+3\sqrt{335}}{10}[/tex].
So the other point of intersection is:
[tex](\frac{15-\sqrt{335}}{10},\frac{5+3\sqrt{335}}{10})[/tex].
The two solutions in exact form are:
[tex](\frac{15+\sqrt{335}}{10},\frac{5-3\sqrt{335}}{10})[/tex]
and
[tex](\frac{15-\sqrt{335}}{10},\frac{5+3\sqrt{335}}{10})[/tex].
If you prefer to look at approximations just put into your calculator:
[tex](3.3303,-4.9909)[/tex]
and
[tex](-0.3303,5.9909)[/tex].