Respuesta :

Answer:

The two solutions in exact form are:

[tex](\frac{15+\sqrt{335}}{10},\frac{5-3\sqrt{335}}{10})[/tex]

and

[tex](\frac{15-\sqrt{335}}{10},\frac{5+3\sqrt{335}}{10})[/tex].

If you prefer to look at approximations just put into your calculator:

[tex](3.3303,-4.9909)[/tex]

and

[tex](-0.3303,5.9909)[/tex].

Step-by-step explanation:

I guess you are asked to find the solution the given system.

I'm going to use substitution.

This means I'm going to plug the second equation into the first giving me:

[tex](-3x+5)^2+x^2=36[/tex]  I replaced the 1st y with what the 2nd y equaled.

Before we continue solving this I'm going to expand the [tex](-3x+5)^2[/tex] using the following:

[tex](a+b)^2=a^2+2ab+b^2[/tex].

[tex](-3x+5)^2=(-3x)^2+2(-3x)(5)+(5)^2[/tex]

[tex](-3x+5)^2=9x^2-30x+25[/tex]

Let's go back to the equation we had:

[tex](-3x+5)^2+x^2=36[/tex]  

After expansion of the squared binomial we have:

[tex]9x^2-30x+25+x^2=36[/tex]

Combine like terms (doing the [tex]9x^2+x^2[/tex] part:

[tex]10x^2-30x+25=36[/tex]

Subtract 36 on both sides:

[tex]10x^2-30x+25-36=0[/tex]

Simplify the 25-36 part:

[tex]10x^2-30x-11=0[/tex]

Compare this to [tex]ax^2+bx+c=0[/tex] which is standard form for a quadratic.

We should see the following:

[tex]a=10[/tex]

[tex]b=-30[/tex]

[tex]c=-11[/tex]

The formula that solves this equation for the variable [tex]x[/tex] is:

[tex]x=\frac{-b \pm \sqrt{b^2-4ac}}{2a}[/tex]

Plugging in our values for [tex]a,b, \text{ and } c[/tex] give us:

[tex]x=\frac{30 \pm \sqrt{(-30)^2-4(10)(-11)}}{2(10)}[/tex]

Simplify the bottom; that is 2(10)=20:

[tex]x=\frac{30 \pm \sqrt{(-30)^2-4(10)(-11)}}{20}[/tex]

Put the inside of square root into the calculator; that is put [tex](-30)^2-4(10)(-11)[/tex] in the calculator:

[tex]x=\frac{30 \pm \sqrt{1340}}{20}[/tex]

Side notes before continuation:

Let's see if 1340 has a perfect square.

I know 1340 is divisible by 10 because it ends in 0.

1340=10(134)

134 is even so it is divisible by 2:

1340=10(2)(67)

1340=2(2)(5)(67)

1340=4(5)(67)

1340=4(335)

4 is a perfect square so we can simplify the square root part further:

[tex]\sqrt{1340}=\sqrt{4}\sqrt{335}=2\sqrt{335}[/tex].

Let's go back to the solution:

[tex]x=\frac{30 \pm \sqrt{1340}}{20}[/tex]

[tex]x=\frac{30 \pm 2 \sqrt{335}}{20}[/tex]

Now I see all three terms contain a common factor of 2 so I'm going to divide top and bottom by 2:

[tex]x=\frac{\frac{30}{2} \pm \frac{2 \sqrt{335}}{2}}{\frac{20}{2}}[/tex]

[tex]x=\frac{15 \pm \sqrt{335}}{10}[/tex]

So we have these two x values:

[tex]x=\frac{15+\sqrt{335}}{10} \text{ or } \frac{15-\sqrt{335}}{10}[/tex]

Now we just need to find the corresponding y-coordinate for each pair of points.

I'm going to use the easier equation [tex]y=-3x+5[/tex].

Let's do it for the first x I mentioned:

If [tex]x=\frac{15+\sqrt{335}}{10}[/tex] then

[tex]y=-3(\frac{15+\sqrt{335}}{10})+5[/tex].

Let's simplify:

Distribute the -3 to the terms on top:

[tex]y=\frac{-45-3\sqrt{335}}{10}+5[/tex]

Combine the two terms; I'm going to do this by writing 5 as 50/10:

[tex]y=\frac{-45-3\sqrt{335}+50}{10}[/tex]

Combine like terms on top; the -45+50 part:

[tex]y=\frac{5-3\sqrt{335}}{10}[/tex].

So one solution point is:

[tex](\frac{15+\sqrt{335}}{10},\frac{5-3\sqrt{335}}{10})[/tex].

Let's find the other one for the other x that we got.

If [tex]x=\frac{15-\sqrt{335}}{10}[/tex] then

[tex]y=-3(\frac{15-\sqrt{335}}{10})+5[/tex].

Let's simplify.

Distribute the -3 on top:

[tex]y=\frac{-45+3\sqrt{335}}{10}+5[/tex]

I'm going to write 5 as 50/10 so I can combine the terms as one fraction:

[tex]y=\frac{-45+3\sqrt{335}+50}{5}[/tex]

Simplify the -45+50 part:

[tex]y=\frac{5+3\sqrt{335}}{10}[/tex].

So the other point of intersection is:

[tex](\frac{15-\sqrt{335}}{10},\frac{5+3\sqrt{335}}{10})[/tex].

The two solutions in exact form are:

[tex](\frac{15+\sqrt{335}}{10},\frac{5-3\sqrt{335}}{10})[/tex]

and

[tex](\frac{15-\sqrt{335}}{10},\frac{5+3\sqrt{335}}{10})[/tex].

If you prefer to look at approximations just put into your calculator:

[tex](3.3303,-4.9909)[/tex]

and

[tex](-0.3303,5.9909)[/tex].