Respuesta :

Answer:

[tex]\frac{\pi }{2}[/tex] and [tex]\frac{3\pi }{2}[/tex]

Step-by-step explanation:

To find the max points we need to take the derivative of the function and then find the critical values.

First we take the derivative:

[tex]f(x) = 4cos(2x-\pi )\\f'(x)=-4sin(2x-\pi )(2)\\f'(x)=-8sin(2x-\pi )\\[/tex]

Now we need to find when f'(x)=0 to find the critical values.

[tex]0=-8sin(2x-\pi )\\0=sin(2x-\pi )\\sin^{-1}0=2x-\pi \\0=2x-\pi \\\pi =2x\\\frac{\pi }{2} =x[/tex]

The critical values will be

[tex]\frac{\pi }{2} n[/tex] for any integer n

between 0 and 2 pi, the critical values will be

[tex]0, \frac{\pi }{2} ,\pi ,\frac{3\pi }{2},2\pi[/tex]

We can determine if these are minimums or maximums by using the second derivative test.

So we need to take the second derivative;

[tex]f'(x)=-8sin(2x-\pi )\\f''(x) = -8cos(2x-\pi )(2)\\f''(x)=-16cos(2x-\pi)[/tex]

We need to see if the second derivative is positive or negative to determine if it is a max or min.

[tex]f''(0) = 16\\f''(\frac{\pi}{2})=-16\\f''(\pi )=16\\f''(\frac{2\pi}{3}) = -16\\[/tex]

Since the second derivative is negative at

[tex]\frac{\pi }{2}[/tex] and [tex]\frac{3\pi }{2}[/tex]

we know both of those are the x-values of maximums.