Answer:
15.03 m
Explanation:
Given:
mass of the block, m = 7.25 kg
Angle, Θ = 28.5°
Initial speed of the block, v₀ = 15 m/s
let the distance traveled by the block be 's'
Now, applying the work energy theorem,
we have
[tex](m\times g\times\sin(\theta)\times s) + \mu_k\times mg\times s\times cos(\theta) = \frac{1}{2}\times m\times v^2[/tex]
on substituting the values in the above equation, we get
[tex](7.25\times 9.8\times\sin(28.5^o)\times s) + 0.326\times 7.25\times9.8\times s\times cos(28.5^o) = \frac{1}{2}\times 7.25\times 15^2[/tex]
or
[tex]33.902\times s) +20.35\times s = 815.625[/tex]
or
[tex]54.252\times s = 815.625[/tex]
s = 15.03 m
Hence, the block will travel 15.03 m up the ramp