A plane flies horizontally at an altitude of 7 km and passes directly over a tracking telescope on the ground. When the angle of elevation is π/4, this angle is decreasing at a rate of π/4 rad/min. How fast is the plane traveling at that time?

Respuesta :

Answer:

The plane moving with velocity =[tex]\frac{dx}{dt}=\frac{7\pi}{2} Km/min[/tex]

Explanation:

Let [tex]\theta [/tex]  be angle of elevation and x(t)be the horizontal displacement of the plane  from the tracking slope

We are given that a plane flies horizontally at an altitude of 7 Km and passes directly over a tracking telescope on the ground .

The angle of elevation is [tex]\frac{\pi}{4}[/tex]

The rate at which an angle of elevation decreasing =-[tex]\frac{\pi}{4}[/tex]rad/min

[tex]tan\theta=\frac{perpendicular}{base}[/tex]

[tex]tan\theta=\frac{7}{x(t)}[/tex]

[tex]x(t)=\frac{7}{tan\theta}=7 cot\theta[/tex]

[tex]x(t)=7 cot\theta[/tex]

Differentiate w.r.t time

Then we get [tex]\frac{dx}{dt}=- 7 cosec^2\theta \cdot \frac{d\theta}{dt}[/tex]

[tex]\frac{dx}{dt}=-7 cosec^2\frac{\pi}{4}\cdot (-\frac{\pi}{4})[/tex]

[tex]\frac{dx}{dt}=7 (\sqrt2)^2 \cdot\frac{\pi}{4}=\frac{7\pi}{2}[/tex]

[tex]\frac{dx}{dt}=\frac{7\pi}{2} Km/min[/tex]

The plane moving with velocity =[tex]\frac{dx}{dt}=\frac{7\pi}{2} Km/min[/tex]