Respuesta :
Answer:
Dimension of the box is [tex]16.1\times 7.1\times 2.45[/tex]
The volume of the box is 280.05 in³.
Step-by-step explanation:
Given : The open rectangular box of maximum volume that can be made from a sheet of cardboard 21 in. by 12 in. by cutting congruent squares from the corners and folding up the sides.
To find : The dimensions and the volume of the box?
Solution :
Let h be the height of the box which is the side length of a corner square.
According to question,
A sheet of cardboard 21 in. by 12 in. by cutting congruent squares from the corners and folding up the sides.
The length of the box is [tex]L=21-2h[/tex]
The width of the box is [tex]W=12-2h[/tex]
The volume of the box is [tex]V=L\times W\times H[/tex]
[tex]V=(21-2h)\times (12-2h)\times h[/tex]
[tex]V=(21-2h)\times (12h-2h^2)[/tex]
[tex]V=252h-42h^2-24h^2+4h^3[/tex]
[tex]V=4h^3-66h^2+252h[/tex]
To maximize the volume we find derivative of volume and put it to zero.
[tex]V'=12h^2-132h+252[/tex]
[tex]0=12h^2-132h+252[/tex]
Solving by quadratic formula,
[tex]h=\frac{-b\pm\sqrt{b^2-4ac}}{2a}[/tex]
[tex]h=\frac{-(-132)\pm\sqrt{132^2-4(12)(252)}}{2(12)}[/tex]
[tex]h=\frac{132\pm72.99}{24}[/tex]
[tex]h=2.45,8.54[/tex]
Now, substitute the value of h in the volume,
[tex]V=4h^3-66h^2+252h[/tex]
When, h=2.45
[tex]V=4(2.45)^3-66(2.45)^2+252(2.45)[/tex]
[tex]V\approx 280.05[/tex]
When, h=8.54
[tex]V=4(8.54)^3-66(8.54)^2+252(8.54)[/tex]
[tex]V\approx -170.06[/tex]
Rejecting the negative volume as it is not possible.
Therefore, The volume of the box is 280.05 in³.
The dimension of the box is
The height of the box is h=2.45
The length of the box is [tex]L=21-2(2.45)=16.1[/tex]
The width of the box is [tex]W=12-2(2.45)=7.1[/tex]
So, Dimension of the box is [tex]16.1\times 7.1\times 2.45[/tex]