Find the dimensions of the open rectangular box of maximum volume that can be made from a sheet of cardboard 21 in. by 12 in. by cutting congruent squares from the corners and folding up the sides. Then find the volume.

Respuesta :

Answer:

Dimension of the box is [tex]16.1\times 7.1\times 2.45[/tex]

The volume of the box is 280.05 in³.

Step-by-step explanation:          

Given : The open rectangular box of maximum volume that can be made from a sheet of cardboard 21 in. by 12 in. by cutting congruent squares from the corners and folding up the sides.

To find : The dimensions and the volume of the box?

Solution :

Let h be the height of the box which is the side length of a corner square.

According to question,

A sheet of cardboard 21 in. by 12 in. by cutting congruent squares from the corners and folding up the sides.

The length of the box is [tex]L=21-2h[/tex]

The width of the box is [tex]W=12-2h[/tex]

The volume of the box is [tex]V=L\times W\times H[/tex]

[tex]V=(21-2h)\times (12-2h)\times h[/tex]

[tex]V=(21-2h)\times (12h-2h^2)[/tex]

[tex]V=252h-42h^2-24h^2+4h^3[/tex]

[tex]V=4h^3-66h^2+252h[/tex]

To maximize the volume we find derivative of volume and put it to zero.

[tex]V'=12h^2-132h+252[/tex]

[tex]0=12h^2-132h+252[/tex]

Solving by quadratic formula,

[tex]h=\frac{-b\pm\sqrt{b^2-4ac}}{2a}[/tex]

[tex]h=\frac{-(-132)\pm\sqrt{132^2-4(12)(252)}}{2(12)}[/tex]

[tex]h=\frac{132\pm72.99}{24}[/tex]

[tex]h=2.45,8.54[/tex]

Now, substitute the value of h in the volume,

[tex]V=4h^3-66h^2+252h[/tex]

When, h=2.45

[tex]V=4(2.45)^3-66(2.45)^2+252(2.45)[/tex]

[tex]V\approx 280.05[/tex]

When, h=8.54

[tex]V=4(8.54)^3-66(8.54)^2+252(8.54)[/tex]

[tex]V\approx -170.06[/tex]

Rejecting the negative volume as it is not possible.

Therefore, The volume of the box is 280.05 in³.

The dimension of the box is

The height of the box is h=2.45

The length of the box is [tex]L=21-2(2.45)=16.1[/tex]

The width of the box is [tex]W=12-2(2.45)=7.1[/tex]

So, Dimension of the box is [tex]16.1\times 7.1\times 2.45[/tex]