Answer:
The voltage of the generator is 7.27 kV.
Explanation:
Given that,
Output of generator = 440 V
Current = 20 A
Resistance = 0.60 Ω
Power loss =0.010%
We need to calculate the total power of the generator
Using formula of power
[tex]P=VI[/tex]
Where, V = voltage
I = current
Put the value into the formula
[tex]P=440\times20[/tex]
[tex]P=8800\ W[/tex]
Th power lost on the transmission lines
[tex]P_{L}=0.010\% P[/tex]
[tex]P_{L} = 0.010\%\times8800[/tex]
[tex]P_{L}=0.88\ W[/tex]
The current passing through the transmission line
[tex]I'=\sqrt{\dfrac{P_{L}}{R}}[/tex]
[tex]I'=\sqrt{\dfrac{0.88}{0.60}}[/tex]
[tex]I'=1.211\ A[/tex]
We need to calculate the voltage of the generator
Using formula of voltage
[tex]V_{g}=\dfrac{P}{I'}[/tex]
Put the value into the formula
[tex]V_{g}=\dfrac{8800}{1.211}[/tex]
[tex]V_{g}=7.27\times10^{3}\ V[/tex]
[tex]V_{g}=7.27\ kV[/tex]
Hence, The voltage of the generator is 7.27 kV.