Respuesta :
Answer:
Concentration of [tex]PCl_{5}[/tex] at equilibrium is 0.05385 M and concentration of [tex]PCl_{3}[/tex] at equilibrium is 0.0334 M
Explanation:
Construct an ICE table to calculate change in concentration at equilibrium.
Initial concentration of [tex]PCl_{5}[/tex] = [tex]\frac{0.349}{4.00}M = 0.08725 M[/tex]
[tex]PCl_{5}\rightleftharpoons PCl_{3}+Cl_{2}[/tex]
I: 0.08725 0 0
C: -x +x +x
E: 0.08725-x x x
species inside third bracket represent equilibrium concentrations
[tex]\frac{[PCl_{3}][Cl_{2}]}{[PCl_{5}]}=K_{c}[/tex]
or,[tex]\frac{x^{2}}{0.08725-x}=1.80[/tex]
or,[tex]x^{2}+1.8x-0.15705=0[/tex]
or,[tex]x=\frac{-1.8+\sqrt{(1.8)^{2}+(4\times 0.15705)}}{2}[/tex]
So, [tex]x=0.0334 M[/tex]
So, [tex][PCl_{3}]=x=0.0334 M[/tex], [tex][PCl_{5}]= 0.08725-x = 0.05385 M[/tex]
Answer : The concentration of [tex]PCl_3[/tex] and [tex]PCl_5[/tex] at equilibrium are, 0.0834 M and 0.00385 M
Explanation :
First we have to calculate the concentration of [tex]PCl_5[/tex].
[tex]\text{Concentration of }PCl_5=\frac{\text{Moles of }PCl_5}{\text{Volume of }PCl_5}=\frac{0.349mole}{4.00L}=0.08725mole/L[/tex]
The given equilibrium reaction is,
[tex]PCl_5(g)\rightleftharpoons PCl_3(g)+Cl_2(g)[/tex]
Initial conc. 0.08725 0 0
At equilibrium (0.08725-x) x x
The expression for equilibrium constant will be,
[tex]K_c=\frac{[PCl_3][Cl_2]}{[PCl_5]}[/tex]
Now put all the given values in this expression, we get:
[tex]1.80=\frac{(x)\times (x)}{(0.08725-x)}[/tex]
By solving the term 'x', we get:
[tex]x=0.0834M[/tex]
The concentration of [tex]PCl_3[/tex] at equilibrium = x = 0.0834 M
The concentration of [tex]PCl_5[/tex] at equilibrium = (0.08725-x) = (0.08725-0.0834) = 0.00385 M
Therefore, the concentration of [tex]PCl_3[/tex] and [tex]PCl_5[/tex] at equilibrium are, 0.0834 M and 0.00385 M
