Answer:
The angle of refraction in water 32.12°.
Explanation:
Given that,
Thickness = 5.0 cm
Index of refraction for oil = 1.15
Index of refraction for water = 1.33
Angle = 45°
We need to calculate the angle of refraction
When the ray of light enters from air to oil
Using formula of refraction
[tex]n_{a}\sin\theta_{a}=n_{o}\sin\theta_{o}[/tex]
Where, [tex]n_{a}[/tex] = refractive index of air
[tex]n_{0}[/tex] = refractive index of oil
Put the value into the formula
[tex]1\times\sin45=1.15\sin\theta_{o}[/tex]
[tex]\sin\theta_{o}=\dfrac{1}{\sqrt{2}\times1.15}[/tex]
[tex]\sin\theta_{o}=0.6148[/tex]
[tex]\theta_{o}=sin^{-1}0.6149[/tex]
[tex]\theta_{o}=37.94^{\circ}[/tex]
When the ray of light enters from oil to water
Using formula of refraction
[tex]n_{0}\sin\theta_{0}=n_{w}\sin\theta_{w}[/tex]
Where, [tex]n_{w}[/tex] = refractive index of water
[tex]1.15\times\sin37.94^{\circ}=1.33\sin\theta_{w}[/tex]
[tex]\sin\theta_{w}=\dfrac{1.15\sin37.94^{\circ}}{1.33}[/tex]
[tex]\theta_{w}=\sin^{-1}0.53163[/tex]
[tex]\theta_{w}=32.12^{\circ}[/tex]
Hence, The angle of refraction in water 32.12°.