Respuesta :
Answer:
for the hose
[tex]R_e=1.269\times 10^{5}[/tex]
hence, greater than 2000. thus the flow is turbulent
for the nozzle
[tex]R_e=1.694\times 10^{6}[/tex]
hence, greater than 2000. thus the flow is turbulent
Explanation:
Given:
Diameter of hose, d₁ = 6.40 cm = 0.064 m
Flow, Q = 40.0 L/s = 40.0 × 10⁻³ m³/s
Gauge pressure, P = 1.62 × 10⁶ N/m²
Diameter of the nozzle, d₂ = 3.0 cm = 0.03 m
Now,
Q = A₁V₁
A₁ is the area at the hose
V₁ is velocity at the hose
Now,
V₁ = Q/A₁
on substituting the values, we get
V₁ =[tex]\frac{40\times 10^{-3}}{\frac{\pi d_1^2}{4}}[/tex]
or
V₁ =[tex]\frac{40\times 10^{-3}}{\frac{\pi 0.064^2}{4}}[/tex]
or
V₁ = 12.43 m/s
Also
Q = A₂V₂
A₂ is the area at the nozzle
V₂ is velocity at the nozzle
Now,
V₂ = Q/A₂
on substituting the values, we get
V₂ =[tex]\frac{40\times 10^{-3}}{\frac{\pi d_1^2}{4}}[/tex]
or
V₂ =[tex]\frac{40\times 10^{-3}}{\frac{\pi 0.03^2}{4}}[/tex]
or
V₂ = 56.6 m/s
Now,
The Reynold's number (Re) is given as:
[tex]R_e=\frac{2\rho v r}{\eta}[/tex]
where,
ρ = density of water = 1000 kg/m³
η = viscosity coefficient = 1.002 × 10⁻³
thus,
for the hose
[tex]R_e=\frac{2\times1000\times12.43\times (0.064/2)}{1.002\times 10^{-3}}[/tex]
or
[tex]R_e=1.269\times 10^{5}[/tex]
hence, greater than 2000. thus the flow is turbulent
for the nozzle
[tex]R_e=\frac{2\times1000\times56.6\times (0.03/2)}{1.002\times 10^{-3}}[/tex]
or
[tex]R_e=1.694\times 10^{6}[/tex]
hence, greater than 2000. thus the flow is turbulent