Answer:
Velocity of a proton, [tex]v=1.7\times 10^6\ m/s[/tex]
Explanation:
It is given that,
Potential difference, [tex]V=15\ kV=15\times 10^3\ V[/tex]
Let v is the velocity of a proton that has been accelerated by a potential difference of 15 kV.
Using the conservation of energy as :
[tex]\dfrac{1}{2}mv^2=qV[/tex]
q is the charge of proton
m is the mass of proton
[tex]v=\sqrt{\dfrac{2qV}{m}}[/tex]
[tex]v=\sqrt{\dfrac{2\times 1.6\times 10^{-19}\ C\times 15\times 10^3\ V}{1.67\times 10^{-27}\ kg}[/tex]
[tex]v=1695361.75\ m/s[/tex]
[tex]v=1.69\times 10^6\ m/s[/tex]
or
[tex]v=1.7\times 10^6\ m/s[/tex]
So, the velocity of a proton is [tex]1.7\times 10^6\ m/s[/tex]. Hence, this is the required solution.