[tex]S[/tex] is the disk of radius 1 parallel to the [tex]x,y[/tex]-plane and lying in the plane [tex]z=16[/tex]. Parameterize this surface by
[tex]\vec r(u,v)=u\cos v\,\vec\imath+u\sin v\,\vec\jmath+16\,\vec k[/tex]
with [tex]0\le u\le1[/tex] and [tex]0\le v\le2\pi[/tex]. Take the normal vector to [tex]S[/tex] to be
[tex]\vec r_u\times\vec r_v=u\,\vec k[/tex]
(the orientation doesn't matter because this is a scalar surface integral)
Then
[tex]\displaystyle\iint_S(x-2y+z)\,\mathrm dS=\iint_S(u\cos v-2u\sin v+16)\|u\,\vec k\|\,\mathrm du\,\mathrm dv[/tex]
[tex]=\displaystyle\int_0^{2\pi}\int_0^1(u^2(\cos v-2\sin v)+16u)\,\mathrm du\,\mathrm dv=\boxed{16\pi}[/tex]