Parameterize [tex]S[/tex] by
[tex]\vec r(u,v)=\dfrac23u\cos v\,\vec\imath+\dfrac23u\sin v\,\vec\jmath+u\,\vec k[/tex]
with [tex]4\le u\le5[/tex] and [tex]0\le v\le2\pi[/tex]. Take the normal vector to [tex]S[/tex] to be
[tex]\vec r_u\times\vec r_v=-\dfrac23u\cos v\,\vec\imath-\dfrac23u\sin v\,\vec\jmath+\dfrac49u\,\vec k[/tex]
(orientation doesn't matter here)
Then the area of [tex]S[/tex] is
[tex]\displaystyle\iint_S\mathrm dA=\iint_S\|\vec r_u\times\vec r_v\|\,\mathrm du\,\mathrm dv[/tex]
[tex]=\displaystyle\frac{2\sqrt{13}}9\int_0^{2\pi}\int_4^5u\,\mathrm du\,\mathrm dv[/tex]
[tex]=\displaystyle\frac{4\sqrt{13}\,\pi}9\int_4^5u\,\mathrm du=\boxed{2\sqrt{13}\,\pi}[/tex]