Respuesta :
Answer: The required solution is
[tex]y=(t-\dfrac{t^3}{2}+~~.~~.~~.).[/tex]
Step-by-step explanation: We are given to find the solution of the following differential equation using power series method :
[tex]y^\prime+ty=0,~~y(0)=1~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~(i)[/tex]
Let [tex]y=\sum_{n=0}^{\infty}a_nq^n[/tex] be the solution of the given equation.
Then, we have
[tex]y^\prime=\sum_{n=1}^{\infty}a_nnt^{n-1}.[/tex]
From equation (i), we get
[tex]\sum_{n=1}^{\infty}a_nnt^{n-1}+t\sum_{n=0}^{\infty}a_nt^n=0\\\\\\\Rightarrow \sum_{n=1}^{\infty}a_nnt^{n-1}+t\sum_{n=-1}^{\infty}a_nt^{n+1}=0.[/tex]
Comparing the coefficients of [tex]t^n,~t^{n+1},~,~~.~~.~~.[/tex] from both sides of the above, we get
[tex]2a_2+a_0\\\\\Rightarrow a_2=-\dfrac{a_0}{2},\\\\\\3a_3+a_1=0\\\\\Rightarrow a_3=-\dfrac{a_1}{3},\\\\\\\vdots~~~\vdots~~~\vdots[/tex]
Therefore, we get
[tex]y=a_0(1-\dfrac{1}{2}t^2+~~.~~.~~.)+a_1(t-\dfrac{t^3}{2}+~~.~~.~~.).[/tex]
The condition y(0) = 1 gives
[tex]a_0=0.[/tex]
So, the required solution is
[tex]y=t-\dfrac{t^3}{2}+~~.~~.~~.[/tex]
Answer with explanation:
The diiferential equation of first order is,
y'+t y=0
[tex]y=\sum_{n=0}^{\infty}a_{n}x^n\\\\y'=\sum_{n=1}^{\infty}na_{n}x^{n-1}\\\\y'+ty=\sum_{n=0}^{\infty}na_{n-1}x^{n-1}+t\sum_{n=0}^{\infty}a_{n}x^n\\\\=\sum_{n=0}^{\infty}(a_{n-1}\frac{n}{x}+a_{n}t)x^n\\\\\rightarrow y'+t y=0\\\\\rightarrow a_{n-1}\frac{n}{x}+a_{n}t=0\\\\a_{n-1}=\frac{-xta_{n}}{n}[/tex]
For, n=1
[tex]a_{0}=\frac{-xta_{1}}{1}\\\\a_{0}=-txa_{1}\\\\a_{1}=\frac{-a_{0}}{tx}\\\\\text{for}, n=2\\\\a_{1}=\frac{-xta_{2}}{2}\\\\a_{2}=\frac{-2a_{1}}{xt}\\\\=\frac{2a_{0}}{x^2t^2}\\\\\text{for}, n=3\\\\a_{2}=\frac{-xta_{3}}{3}\\\\a_{3}=\frac{-6a_{0}}{x^3t^3}\\\\a_{4}=\frac{24a_{0}}{x^4t^4}\\\\a_{n}=(-1)^n\frac{n!a_{0}}{x^nt^n}[/tex]
So,the series can be written as
[tex]y_{n}=\sum_{n=1}^{\infty}(-1)^n\frac{n!a_{0}}{x^nt^n}[/tex]