Answer:
a.[tex]x'_2+2x_2+3 x_1=0[/tex]
b.[tex]x'_2+2x_2+x_1=0[/tex]
Step-by-step explanation:
We are given differential equation of second order in each part
We have to change given differential equation into first order differential equation
a.y''+2y'+3y=0
Suppose [tex]x_1=y(t)[/tex]
[tex]x_2=y'(t)[/tex]
Differentiate w.r.t times then we get
[tex]x'_1=y'(t)=x_2[/tex]
[tex]x'_2=y''(t)[/tex]
Substitute the values in the given differential equation then we get
[tex]x'_2+2x_2+3 x_1=0[/tex]
b.y''+2y'+y=0
Suppose
[tex]x_1=y(t)[/tex]
[tex]x_2=y'(t)[/tex]
Differentiate w.r.t time
Then we get
[tex]x'_1=y'(t)=x_2[/tex]
[tex]x'_2=y''(t)[/tex]
Substitute the values in given differential equation
[tex]x'_2+2x_2+x_1=0[/tex]