Respuesta :

Answer:

a.[tex]x'_2+2x_2+3 x_1=0[/tex]

b.[tex]x'_2+2x_2+x_1=0[/tex]

Step-by-step explanation:

We are given differential equation of second order in each part

We have to change given differential equation into first order differential equation

a.y''+2y'+3y=0

Suppose [tex]x_1=y(t)[/tex]

[tex]x_2=y'(t)[/tex]

Differentiate w.r.t times then we get

[tex]x'_1=y'(t)=x_2[/tex]

[tex]x'_2=y''(t)[/tex]

Substitute the values in the given differential equation then we get

[tex]x'_2+2x_2+3 x_1=0[/tex]

b.y''+2y'+y=0

Suppose

[tex]x_1=y(t)[/tex]

[tex]x_2=y'(t)[/tex]

Differentiate w.r.t time

Then we get

[tex]x'_1=y'(t)=x_2[/tex]

[tex]x'_2=y''(t)[/tex]

Substitute the values in given differential equation

[tex]x'_2+2x_2+x_1=0[/tex]

RELAXING NOICE
Relax