Answer:
[tex]\frac{y}{x^2}=\sin x+\pi[/tex]
Step-by-step explanation:
Consider linear differential equation [tex]\frac{\mathrm{d} y}{\mathrm{d} x}+yp(x)=q(x)[/tex]
It's solution is of form [tex]y\,I.F=\int I.F\,q(x)\,dx[/tex] where I.F is integrating factor given by [tex]I.F=e^{\int p(x)\,dx}[/tex].
Given: [tex]\frac{1}{x}\frac{\mathrm{d} y}{\mathrm{d} x}-\frac{2y}{x^2}=x\cos x[/tex]
We can write this equation as [tex]\frac{\mathrm{d} y}{\mathrm{d} x}-\frac{2y}{x}=x^2\cos x[/tex]
On comparing this equation with [tex]\frac{\mathrm{d} y}{\mathrm{d} x}+yp(x)=q(x)[/tex], we get [tex]p(x)=\frac{-2}{x}\,\,,\,\,q(x)=x^2\cos x[/tex]
I.F = [tex]e^{\int p(x)\,dx}=e^{\int \frac{-2}{x}\,dx}=e^{-2\ln x}=e^{\ln x^{-2}}=\frac{1}{x^2}[/tex] { formula used: [tex]\ln a^b=b\ln a[/tex] }
we get solution as follows:
[tex]\frac{y}{x^2}=\int \frac{1}{x^2}x^2\cos x\,dx\\\frac{y}{x^2}=\int \cos x\,dx\\\\\frac{y}{x^2}=\sin x+C[/tex]
{ formula used: [tex]\int \cos x\,dx=\sin x[/tex] }
Applying condition:[tex]y(\pi)=\pi^2[/tex]
[tex]\frac{y}{x^2}=\sin x+C\\\frac{\pi^2}{\pi}=\sin\pi+C\\\pi=C[/tex]
So, we get solution as :
[tex]\frac{y}{x^2}=\sin x+\pi[/tex]