Answer: 56%
Explanation:
Given : The selling price of x number of a certain stereo can be modeled by the function :-
[tex]R(x) =160x[/tex]
The total cost of making x stereos is :
[tex]C(x)=71x-0.02x^2[/tex]
For 31 stereos, the total selling price would be :-
[tex]R(30) =4800[/tex]
For 31 stereos, the total cost would be :-
[tex]C(31)=71(30)-(0.02)(30)^2=2112[/tex]
Now, the percent markup will be
[tex]\dfrac{\text{Selling price-cost}}{\text{cost}}\times100\\\\=\dfrac{4800-2112}{4800}\times100=56\%[/tex]
Hence, the percent markup for 31 stereos is 56%.