Answer:
The activation energy for this reaction, Ea = 159.98 kJ/mol
Explanation:
Using the Arrhenius equation as:
[tex]ln\frac {K_2}{K_1}=-\frac {E_a}{R}\times (\frac {1}{T_2}-\frac {1}{T_1})[/tex]
Where, Ea is the activation energy.
R is the gas constant having value 8.314 J/K.mol
K₂ and K₁ are the rate constants
T₂ and T₁ are the temperature values in kelvin.
Given:
K₂ = 8.66×10⁻⁷ s⁻¹ , T₂ = 425 K
K₁ = 3.61×10⁻¹⁵ s⁻¹ , T₁ = 298 K
Applying in the equation as:
[tex]ln\frac {8.66\times 10^{-7}}{3.61\times 10^{-15}}=-\frac {E_a}{8.314}\times (\frac {1}{425}-\frac {1}{298})[/tex]
Solving for Ea as:
Ea = 159982.23 J /mol
1 J/mol = 10⁻³ kJ/mol
Ea = 159.98 kJ/mol