Consider the mechanism. Step 1: A+B↽−−⇀CA+B↽−−⇀C equilibrium Step 2: C+A⟶DC+A⟶D slow Overall: 2A+B⟶D2A+B⟶D Determine the rate law for the overall reaction, where the overall rate constant is represented as ????.

Respuesta :

znk

Answer:

rate = k[A][B] where k = k₂K

Explanation:

Your mechanism is a slow step with a prior equilibrium:

[tex]\begin{array}{rrcl}\text{Step 1}:& \text{A + B} & \xrightarrow [k_{-1}]{k_{1}} & \text{C}\\\text{Step 2}: & \text{C + A} & \xrightarrow [ ]{k_{2}} & \text{D}\\\text{Overall}: & \text{2A + B} & \longrightarrow \, & \text{D}\\\end{array}[/tex]

(The arrow in Step 1 should be equilibrium arrows).

1. Write the rate equations:

[tex]-\dfrac{\text{d[A]}}{\text{d}t} = -\dfrac{\text{d[B]}}{\text{d}t} = -k_{1}[\text{A}][\text{B}] + k_{1}[\text{C}]\\\\\dfrac{\text{d[C]}}{\text{d}t} = k_{1}[\text{A}][\text{B}] - k_{2}[\text{C}]\\\\\dfrac{\text{d[D]}}{\text{d}t} = k_{2}[\text{C}][/tex]

2. Derive the rate law

Assume k₋₁ ≫ k₂.  

Then, in effect, we have an equilibrium that is only slightly disturbed by C slowly reacting to form D.  

In an equilibrium, the forward and reverse rates are equal:

k₁[A][B] = k₋₁[C]

[C] = (k₁/k₋₁)[A][B] = K[A][B] (K is the equilibrium constant)

rate = d[D]/dt = k₂[C] = k₂K[A][B] = k[A][B]

The rate law is  

rate = k[A][B] where k = k₂K

ACCESS MORE