Respuesta :
Answer : The rate constant at 785.0 K is, [tex]1.45\times 10^{-2}s^{-1}[/tex]
Explanation :
According to the Arrhenius equation,
[tex]K=A\times e^{\frac{-Ea}{RT}}[/tex]
or,
[tex]\log (\frac{K_2}{K_1})=\frac{Ea}{2.303\times R}[\frac{1}{T_1}-\frac{1}{T_2}][/tex]
where,
[tex]K_1[/tex] = rate constant at [tex]600.0K[/tex] = [tex]6.1\times 10^{-8}s^{-1}[/tex]
[tex]K_2[/tex] = rate constant at [tex]785.0K[/tex] = ?
[tex]Ea[/tex] = activation energy for the reaction = 262 kJ/mole = 262000 J/mole
R = gas constant = 8.314 J/mole.K
[tex]T_1[/tex] = initial temperature = [tex]600.0K[/tex]
[tex]T_2[/tex] = final temperature = [tex]785.0K[/tex]
Now put all the given values in this formula, we get:
[tex]\log (\frac{K_2}{6.1\times 10^{-8}s^{-1}})=\frac{262000J/mole}{2.303\times 8.314J/mole.K}[\frac{1}{600.0K}-\frac{1}{785.0K}][/tex]
[tex]K_2=1.45\times 10^{-2}s^{-1}[/tex]
Therefore, the rate constant at 785.0 K is, [tex]1.45\times 10^{-2}s^{-1}[/tex]
The rate constant at the new temperature is 1.81 ×10^−2 s−1.
We have the reaction written as follows; C4H8(g)⟶2C2H4(g) C4H8(g)⟶2C2H4(g).
We have to use the formula;
ln(k2/k1) =Ea/R(1/T1 - 1/T2)
Now;
k2 = ?
k1 = 6.1×10−8 s−1
Ea = 262 ×10 ^3 J/mol
T1= 600.0 K
T2 = 785.0 K
R = 8.314 J/K. mol
ln (k2/6.1×10−8) = 262 ×10 ^3 /8.314 (1/600.0 - 1/785.0)
ln (k2/6.1×10−8) = 12.6
k2/6.1×10−8 = e^12.6
k2 = 6.1×10−8 (e^12.6)
k2 = 1.81 ×10^−2 s−1.
Learn more about rate constant: https://brainly.com/question/8139015
