Answer: [tex]Cl_2[/tex] = 42.9 atm, [tex]PCl_3[/tex] = 93.4 atm and [tex]PCl_5[/tex] = 7.66 atm
Explanation: The given balanced equation is:
[tex]PCl_5(g)\rightleftharpoons PCl_3(g)+Cl_2(g)[/tex]
[tex]K_p=523.6[/tex]
Initial pressure of [tex]PCl_5[/tex] = 50.560 atm
initial pressure of [tex]PCl_3[/tex] = 50.500 atm
Let's say the change in pressure is p. Then:
equilibrium partial pressure of [tex]PCl_5[/tex] = (50.560 - p) atm
equilibrium partial pressure of [tex]PCl_3[/tex] = (50.500 + p) atm
equilibrium partial pressure of [tex]Cl_2[/tex] = p atm
[tex]K_p=\frac{(PCl_3)(Cl_2)}{PCl_5}[/tex]
Let's plug in the values in it:
[tex]523.6=\frac{(50.500+p)(p)}{50.560-p}[/tex]
on cross multiply:
[tex]26473.216-523.6p=50.500p+p^2[/tex]
on rearranging the above equation:
[tex]p^2+574.1p-26473.216=0[/tex]
It's a quadratic equation. On solving this equation:
p = 42.9
So, the equalibrium partial pressure of [tex]Cl_2[/tex] = 42.9 atm
equilibrium partial pressure of [tex]PCl_3[/tex] = 50.500 + 42.9 = 93.4 atm
equilibrium partial pressure of [tex]PCl_5[/tex] = 50.560 - 42.9 = 7.66 atm