Respuesta :

gmany

Answer:

2x + 3y = 5

Step-by-step explanation:

[tex]\bold{METHOD\ 1:}[/tex]

The slope-intercept form of an equation of a line:

[tex]y=mx+b[/tex]

m - slope

b - y-intercept

Let [tex]k:y=m_1x+b_1,\ l:y=m_2x+b_2[/tex]

then

[tex]l\ \parallel\ k\iff m_1=m_2\\\\l\ \perp\ k\iff m_1m_2=-1\to m_2=-\dfrac{1}{m_1}[/tex]

We have the equation of a line:

[tex]2x+3y=6[/tex]

Convert to the slope-intercept form:

[tex]2x+3y=6[/tex]           subtract 2x from both sides

[tex]3y=-2x+6[/tex]              divide both sides by 3

[tex]y=-\dfrac{2}{3}x+2\to m_1=-\dfrac{2}{3}[/tex]

therefore the slope is [tex]m_2=-\dfrac{2}{3}[/tex]

Put the value of the slope and the coordinates of the point (-2, 3) to the equation of a line:

[tex]3=-\dfrac{2}{3}(-2)+b[/tex]

[tex]3=\dfrac{4}{3}+b[/tex]            subtract 4/3 from both sides

[tex]\dfrac{9}{3}-\dfrac{4}{3}=b\to b=\dfrac{5}{3}[/tex]

Finally:

[tex]y=-\dfrac{2}{3}x+\dfrac{5}{3}[/tex]

Convert to the standard form (Ax + By = C):

[tex]y=-\dfrac{2}{3}x+\dfrac{5}{3}[/tex]              multiply both sides by 3

[tex]3y=-2x+5[/tex]           add 2x to both sides

[tex]2x+3y=5[/tex]

[tex]\bold{METHOD\ 2:}[/tex]

Let [tex]k:A_1x+B_1y=C_1,\ l:A_2x+B_2y=C_2[/tex].

Lines k and l are parallel iff

[tex]A_1=A_2\ \wedge\ B_1=B_2\to\dfrac{A_2}{A_1}=\dfrac{B_2}{B_1}[/tex]

We have the equation:

[tex]2x+3y=6\to A_1=2,\ B_1=3[/tex]

then the equation of a line parallel to given lines has the equation:

[tex]2x+3y=C[/tex]

Put the coordinates of the point (-2, 3) to the equation:

[tex]C=2(-2)+3(3)\\\\C=-4+9\\\\C=5[/tex]

Finally:

[tex]2x+3y=5[/tex]

RELAXING NOICE
Relax