Respuesta :
Answer:
2x + 3y = 5
Step-by-step explanation:
[tex]\bold{METHOD\ 1:}[/tex]
The slope-intercept form of an equation of a line:
[tex]y=mx+b[/tex]
m - slope
b - y-intercept
Let [tex]k:y=m_1x+b_1,\ l:y=m_2x+b_2[/tex]
then
[tex]l\ \parallel\ k\iff m_1=m_2\\\\l\ \perp\ k\iff m_1m_2=-1\to m_2=-\dfrac{1}{m_1}[/tex]
We have the equation of a line:
[tex]2x+3y=6[/tex]
Convert to the slope-intercept form:
[tex]2x+3y=6[/tex] subtract 2x from both sides
[tex]3y=-2x+6[/tex] divide both sides by 3
[tex]y=-\dfrac{2}{3}x+2\to m_1=-\dfrac{2}{3}[/tex]
therefore the slope is [tex]m_2=-\dfrac{2}{3}[/tex]
Put the value of the slope and the coordinates of the point (-2, 3) to the equation of a line:
[tex]3=-\dfrac{2}{3}(-2)+b[/tex]
[tex]3=\dfrac{4}{3}+b[/tex] subtract 4/3 from both sides
[tex]\dfrac{9}{3}-\dfrac{4}{3}=b\to b=\dfrac{5}{3}[/tex]
Finally:
[tex]y=-\dfrac{2}{3}x+\dfrac{5}{3}[/tex]
Convert to the standard form (Ax + By = C):
[tex]y=-\dfrac{2}{3}x+\dfrac{5}{3}[/tex] multiply both sides by 3
[tex]3y=-2x+5[/tex] add 2x to both sides
[tex]2x+3y=5[/tex]
[tex]\bold{METHOD\ 2:}[/tex]
Let [tex]k:A_1x+B_1y=C_1,\ l:A_2x+B_2y=C_2[/tex].
Lines k and l are parallel iff
[tex]A_1=A_2\ \wedge\ B_1=B_2\to\dfrac{A_2}{A_1}=\dfrac{B_2}{B_1}[/tex]
We have the equation:
[tex]2x+3y=6\to A_1=2,\ B_1=3[/tex]
then the equation of a line parallel to given lines has the equation:
[tex]2x+3y=C[/tex]
Put the coordinates of the point (-2, 3) to the equation:
[tex]C=2(-2)+3(3)\\\\C=-4+9\\\\C=5[/tex]
Finally:
[tex]2x+3y=5[/tex]
