Answer:
Step-by-step explanation:
[tex]y'' + y' − 2y = 0, y(0) = a, y' (0) = 1[/tex]
Auxialary equation is
[tex]m^2+m-2=0\\m=-2,1[/tex]
General solution is
[tex]y=Ae^{-2x} +Be^x[/tex]
[tex]y(0) = A+B =a[/tex]
[tex]y'(0) = -2Ae^{2x} +Be^x = -2A+B = 1[/tex]
Eliminate B to get
3A =a-1
We know that y tends to 0 when x tends to infinity for any finite A
i.e. a should be a finite real number.