Answer:
[tex]\dfrac{2}{3}(1+y)^{\dfrac{2}{3}}+ \dfrac{x^3}{3}=c[/tex]
Step-by-step explanation:
variable separable form:
[tex]\dfrac{\mathrm{d} y}{\mathrm{d} x}=x^2\sqrt[3] {1+y}\\\dfrac{dy}{\sqrt{1+y}} = x^2dx\\\int\dfrac{dy}{\sqrt[3] {1+y}} = \int x^2dx\\\dfrac{2}{3}(1+y)^{\dfrac{2}{3}}= \dfrac{x^3}{3}+c\\\dfrac{2}{3}(1+y)^{\dfrac{2}{3}}+ \dfrac{x^3}{3}=c[/tex]
hence the solution comes out be
[tex]\dfrac{2}{3}(1+y)^{\dfrac{2}{3}}+ \dfrac{x^3}{3}=c[/tex]