I suppose you meant to have the second derivative as the first term:
[tex]2y''+3y'+y=2+3\sin t[/tex]
The corresponding homogeneous equation
[tex]2y''+3y'+y=0[/tex]
has characteristic equation
[tex]2r^2+3r+1=(2r+1)(r+1)=0[/tex]
with roots at [tex]r=-\dfrac12[/tex] and [tex]r=-1[/tex], giving the characteristic solution
[tex]y_c=C_1e^{-t/2}+C_2e^{-t}[/tex]
For the nonhomogeneous equation, assume a solution of the form
[tex]y_p=a+b\sin t+c\cos t[/tex]
with derivatives
[tex]{y_p}'=b\cos t-c\sin t[/tex]
[tex]{y_p}''=-b\sin t-c\cos t[/tex]
Substituting these into the ODE gives
[tex]2(-b\sin t-c\cos t)+3(b\cos t-c\sin t)+(a+b\sin t+c\cos t)=2+3\sin t[/tex]
[tex]-(b+3c)\sin t+(3b-c)\cos t+a=2+3\sin t[/tex]
[tex]\implies a=2,b=-\dfrac3{10},c=-\dfrac9{10}[/tex]
Then the ODE has solution
[tex]\boxed{y(t)=C_1e^{-t/2}+C_2e^{-t}+2-\dfrac3{10}\sin t-\dfrac9{10}\cos t}[/tex]