Respuesta :

I suppose you meant to have the second derivative as the first term:

[tex]2y''+3y'+y=2+3\sin t[/tex]

The corresponding homogeneous equation

[tex]2y''+3y'+y=0[/tex]

has characteristic equation

[tex]2r^2+3r+1=(2r+1)(r+1)=0[/tex]

with roots at [tex]r=-\dfrac12[/tex] and [tex]r=-1[/tex], giving the characteristic solution

[tex]y_c=C_1e^{-t/2}+C_2e^{-t}[/tex]

For the nonhomogeneous equation, assume a solution of the form

[tex]y_p=a+b\sin t+c\cos t[/tex]

with derivatives

[tex]{y_p}'=b\cos t-c\sin t[/tex]

[tex]{y_p}''=-b\sin t-c\cos t[/tex]

Substituting these into the ODE gives

[tex]2(-b\sin t-c\cos t)+3(b\cos t-c\sin t)+(a+b\sin t+c\cos t)=2+3\sin t[/tex]

[tex]-(b+3c)\sin t+(3b-c)\cos t+a=2+3\sin t[/tex]

[tex]\implies a=2,b=-\dfrac3{10},c=-\dfrac9{10}[/tex]

Then the ODE has solution

[tex]\boxed{y(t)=C_1e^{-t/2}+C_2e^{-t}+2-\dfrac3{10}\sin t-\dfrac9{10}\cos t}[/tex]

ACCESS MORE