Explanation:
According to Langmuir isotherm,
[tex]\theta = \frac{k \times P}{1 + k \times P}[/tex]
where, [tex]\theta[/tex] = fraction coverage by gas molecules
k = rate constant
P = partial pressure of gas
Also, [tex]\frac{V}{V_{monolayer}} = \frac{k \times P}{1 + k \times P}[/tex]
or [tex]\frac{V_{monolayer}}{V} = \frac{1 + k \times P}{kP}[/tex]
[tex]\frac{V_{monolayer}}{V} = \frac{1}{kP} + 1[/tex]
k = [tex]\frac{\frac{V}{V_{monolayer}}}{P + (1 - \frac{V}{V_{monolayer}})}[/tex]
Now, equation [tex]P_{1}[/tex] and [tex]P_{2}[/tex] for [tex]V_{monolayer}[/tex] as follows.
[tex]\frac{\frac{V_{1}}{V_{monolayer}}}{P + (1 - \frac{V_{1}}{V_{monolayer}})}[/tex] = [tex]\frac{\frac{V_{2}}{V_{monolayer}}}{P + (1 - \frac{V_{2}}{V_{monolayer}})}[/tex]
[tex]\frac{P_{1}(V_{monolayer} - V_{1}}{V_{1}}[/tex] = [tex]\frac{P_{2}(V_{monolayer} - V_{2}}{V_{2}}[/tex]
[tex]V_{monolayer} = \frac{P_{1} - P_{2}}{\frac{P_{1}}{V_{1}}} - \frac{P_{2}}{V_{2}}[/tex] .......... (1)
As it is given that [tex]P_{1}[/tex] is 56.4 kPa, [tex]P_{2}[/tex] is 108 kPa, [tex]V_{1}[/tex] is [tex]1.52 cm^{3}[/tex] and [tex]V_{2}[/tex] is [tex]2.77 cm^{3}[/tex].
Therefore, putting these values into equation (1) as follows.
[tex]V_{monolayer} = \frac{P_{1} - P_{2}}{\frac{P_{1}}{V_{1}}} - \frac{P_{2}}{V_{2}}[/tex]
= [tex]\frac{56.4 kPa - 108 kPa}{\frac{56.4 kPa}{1.52 cm^{3}}} - \frac{108 kPa}{2.77 cm^{3}}[/tex]
= 27.44 [tex]cm^{3}[/tex]
Thus, we can conclude that volume of monolayer is 27.44 [tex]cm^{3}[/tex].