Answer:[tex]r_0=3.037\times 10^{-14}m[/tex]
Explanation:
Given
charge on alpha particle=+2e
mass of alpha particle=[tex]6.64\times 10^{-27}[/tex] kg
Charge on gold nucleus=+79e
Velocity at r=1m is [tex]1.9\times 10^{7}[/tex]
Using Energy conservation
Kinetic energy of particle will be converting to Potential energy as it approaches to nucleus
therefore
[tex]\frac{1}{2}mv^2+U_{r=1m}=U_{closest\ to\ nucleus}[/tex]
[tex]\frac{1}{2}\left ( 6.64\times 10^{-27}\right )\left ( 1.9\times 10^{7}^2\right )+\frac{K\left ( 2e\right )\left ( 79e\right )}{1}=\frac{K\left ( 2e\right )\left ( 79e\right )}{r_0}[/tex]
[tex]\frac{1}{2}\left ( 6.64\times 10^{-27}\right )\left ( 1.9\times 10^{7}^2\right )=\frac{9\times 10^9\times 158\times \left ( 1.6\times 10^{-19}\right )}{y}\left [\frac{1}{r_0}-\frac{1}{1}\right ][/tex]
on solving we get
[tex]\frac{1}{r_0}=3.292\times 10^{13}[/tex]
[tex]r_0=3.037\times 10^{-14}m[/tex]