Given:
diameter of sphere, d = 6 inches
radius of sphere, r = [tex]\frac{d}{2}[/tex] = 3 inches
density, [tex]\rho}[/tex] = 493 lbm/ [tex]ft^{3}[/tex]
S.G = 1.0027
g = 9.8 m/ [tex]m^{2}[/tex] = 386.22 inch/ [tex]s^{2}[/tex]
Solution:
Using the formula for terminal velocity,
[tex]v_{T}[/tex] = [tex]\sqrt{\frac{2V\rho g}{A \rho C_{d}}}[/tex] (1)
[tex](Since, m = V\times \rho)[/tex]
where,
V = volume of sphere
[tex]C_{d}[/tex] = drag coefficient
Now,
Surface area of sphere, A = [tex]4\pi r^{2}[/tex]
Volume of sphere, V = [tex]\frac{4}{3} \pi r^{3}[/tex]
Using the above formulae in eqn (1):
[tex]v_{T}[/tex] = [tex]\sqrt{\frac{2\times \frac{4}{3} \pir^{3}\rho g}{4\pi r^{2} \rho C_{d}}}[/tex]
[tex]v_{T}[/tex] = [tex]\sqrt{\frac{2gr}{3C_{d}}}[/tex]
[tex]v_{T}[/tex] = [tex]\sqrt{\frac{2\times 386.22\times 3}{3C_{d}}}[/tex]
Therefore, terminal velcity is given by:
[tex]v_{T}[/tex] = [tex]\frac{27.79}{\sqrt{C_d}}[/tex] inch/sec