A compressed-air drill requires an air supply of 0.25 kg/s at gauge pressure of 650 kPa at the drill. The hose from the air compressor to the drill has a 40 mm diameter and is smooth. The maximum compressor discharge gauge pressure is 690 kPa. Neglect changes in air density and any effects of hose curvature. Air leaves the compressor at 40° C. What is the longest hose that can be used?

Respuesta :

Answer:

L = 46.35 m

Explanation:

GIVEN DATA

\dot m  = 0.25 kg/s

D = 40 mm

P_1 = 690 kPa

P_2 = 650 kPa

T_1 = 40° = 313 K

head loss equation

[tex][\frac{P_1}{\rho} +\alpha \frac{v_1^2}{2} +gz_1] -[\frac{P_2}{\rho} +\alpha \frac{v_2^2}{2} +gz_2] = h_l +h_m[/tex]

where[tex] h_l = \frac{ flv^2}{2D}[/tex]

[tex]h_m minor loss [/tex]

density is constant

[tex]v_1 = v_2[/tex]

head is same so,[tex] z_1 = z_2 [/tex]

curvature is constant so[tex] \alpha = constant[/tex]

neglecting minor losses

[tex]\frac{P_1}{\rho}  -\frac{P_2}{\rho} = \frac{ flv^2}{2D}[/tex]

we know[tex] \dot m[/tex] is given as[tex] = \rho VA[/tex]

[tex]\rho =\frac{P_1}{RT_1}[/tex]

[tex]\rho =\frac{690 *10^3}{287*313} = 7.68 kg/m3[/tex]

therefore

[tex]v = \frac{\dot m}{\rho A}[/tex]

[tex]V =\frac{0.25}{7.68 \frac{\pi}{4} *(40*10^{-3})^2}[/tex]

V = 25.90 m/s

[tex]Re = \frac{\rho VD}{\mu}[/tex]

for T = 40 Degree, [tex]\mu = 1.91*10^{-5}[/tex]

[tex]Re =\frac{7.68*25.90*40*10^{-3}}{1.91*10^{-5}}[/tex]

Re = 4.16*10^5 > 2300 therefore turbulent flow

for Re =4.16*10^5 , f = 0.0134

Therefore

[tex]\frac{P_1}{\rho}  -\frac{P_2}{\rho} = \frac{ flv^2}{2D}[/tex]

[tex]L = \frac{(P_1-P_2) 2D}{\rho f v^2}[/tex]

[tex]L =\frac{(690-650)*`10^3* 2*40*10^{-3}}{7.68*0.0134*25.90^2}[/tex]

L = 46.35 m

RELAXING NOICE
Relax