Answer:
L = 46.35 m
Explanation:
GIVEN DATA
\dot m = 0.25 kg/s
D = 40 mm
P_1 = 690 kPa
P_2 = 650 kPa
T_1 = 40° = 313 K
head loss equation
[tex][\frac{P_1}{\rho} +\alpha \frac{v_1^2}{2} +gz_1] -[\frac{P_2}{\rho} +\alpha \frac{v_2^2}{2} +gz_2] = h_l +h_m[/tex]
where[tex] h_l = \frac{ flv^2}{2D}[/tex]
[tex]h_m minor loss [/tex]
density is constant
[tex]v_1 = v_2[/tex]
head is same so,[tex] z_1 = z_2 [/tex]
curvature is constant so[tex] \alpha = constant[/tex]
neglecting minor losses
[tex]\frac{P_1}{\rho} -\frac{P_2}{\rho} = \frac{ flv^2}{2D}[/tex]
we know[tex] \dot m[/tex] is given as[tex] = \rho VA[/tex]
[tex]\rho =\frac{P_1}{RT_1}[/tex]
[tex]\rho =\frac{690 *10^3}{287*313} = 7.68 kg/m3[/tex]
therefore
[tex]v = \frac{\dot m}{\rho A}[/tex]
[tex]V =\frac{0.25}{7.68 \frac{\pi}{4} *(40*10^{-3})^2}[/tex]
V = 25.90 m/s
[tex]Re = \frac{\rho VD}{\mu}[/tex]
for T = 40 Degree, [tex]\mu = 1.91*10^{-5}[/tex]
[tex]Re =\frac{7.68*25.90*40*10^{-3}}{1.91*10^{-5}}[/tex]
Re = 4.16*10^5 > 2300 therefore turbulent flow
for Re =4.16*10^5 , f = 0.0134
Therefore
[tex]\frac{P_1}{\rho} -\frac{P_2}{\rho} = \frac{ flv^2}{2D}[/tex]
[tex]L = \frac{(P_1-P_2) 2D}{\rho f v^2}[/tex]
[tex]L =\frac{(690-650)*`10^3* 2*40*10^{-3}}{7.68*0.0134*25.90^2}[/tex]
L = 46.35 m