Respuesta :

Answer:

The numbers are

[tex]6+2\sqrt{15}i[/tex]   and  [tex]6-2\sqrt{15}i[/tex]

Step-by-step explanation:

Let

x and y -----> the numbers

we know that

[tex]x+y=12[/tex] -----> [tex]y=12-x[/tex] ------> equation A

[tex]xy=96[/tex] ----> equation B

substitute equation A in equation B and solve for x

[tex]x(12-x)=96\\12x-x^{2}=96\\x^{2} -12x+96=0[/tex]

Solve the quadratic equation

The formula to solve a quadratic equation of the form [tex]ax^{2} +bx+c=0[/tex] is equal to

[tex]x=\frac{-b(+/-)\sqrt{b^{2}-4ac}} {2a}[/tex]

in this problem we have

[tex]x^{2} -12x+96=0[/tex]  

so

[tex]a=1\\b=-12\\c=96[/tex]

substitute

[tex]x=\frac{-(-12)(+/-)\sqrt{-12^{2}-4(1)(96)}} {2(1)}[/tex]

[tex]x=\frac{12(+/-)\sqrt{-240}} {2}[/tex]

Remember that

[tex]i^{2}=\sqrt{-1}[/tex]

[tex]x=\frac{12(+/-)\sqrt{240}i} {2}[/tex]

[tex]x=\frac{12(+/-)4\sqrt{15}i} {2}[/tex]

Simplify

[tex]x=6(+/-)2\sqrt{15}i[/tex]

[tex]x1=6+2\sqrt{15}i[/tex]

[tex]x2=6-2\sqrt{15}i[/tex]

we have two solutions

Find the value of y for the first solution

For [tex]x1=6+2\sqrt{15}i[/tex]

[tex]y=12-x[/tex]

substitute

[tex]y1=12-(6+2\sqrt{15}i)[/tex]

[tex]y1=6-2\sqrt{15}i[/tex]

Find the value of y for the second solution

For [tex]x2=6-2\sqrt{15}i[/tex]

[tex]y2=12-x[/tex]

substitute

[tex]y2=12-(6-2\sqrt{15}i)[/tex]

[tex]y2=6+2\sqrt{15}i[/tex]

therefore

The numbers are

[tex]6+2\sqrt{15}i[/tex]   and  [tex]6-2\sqrt{15}i[/tex]

ACCESS MORE