Answer:
see explanation
Step-by-step explanation:
a
The tangent and the radius at the point of contact form a right angle
Using Pythagoras' identity on the right triangle formed.
Let x be the distance from the centre to P, then
x² = 4² + 10² = 16 + 100 = 116 ( take the square root of both sides )
x = [tex]\sqrt{116}[/tex] ≈ 10.77 cm (to 2 dec. places )
b
let the required angle be Θ, then
Using the sine or cosine ratio in the right triangle.
cosΘ = [tex]\frac{adjacent}{hypotenuse}[/tex] = [tex]\frac{10}{\sqrt{116} }[/tex]
Θ = [tex]cos^{-1}[/tex] ( [tex]\frac{10}{\sqrt{116} }[/tex] ) ≈ 21.8°