Answer:
The diffusion flux is [tex]7.3\times10^{-19}\ kg/m^2-s[/tex].
Explanation:
Given that,
Diffusion flux [tex] J =7.8\times10^{-8}\ kg/m^2-s[/tex]
Temperature = 1220°C =1493 K
Concentration gradient = -500 kg/m⁴
Diffusion energy = 145000 J/mol
We need to calculate the diffusion coefficient
Using formula of diffusion flux
[tex]J = -D_{0}\dfrac{dc}{dx}[/tex]
[tex]D_{0}=\dfrac{-J}{\dfrac{dc}{d}}[/tex]
Where, J = diffusion flux
[tex]D_{0}[/tex] = pre exponential factor
[tex]\dfrac{dc}{dx}[/tex] = Concentration gradient
Put the value into the formula
[tex]D_{0}=\dfrac{-7.8\times10^{-8}}{-500 }[/tex]
[tex]D_{0}=1.56\times10^{-10}\ m^2/s[/tex]
Using formula of diffusion coefficient formula
[tex]D=D_{0}\ e^{\frac{-E}{RT}}[/tex]
Where, D = diffusion coefficient
R = gas constant
T = temperature
Put the value of D₀ into the formula
[tex]D=1.56\times10^{-10}\ e^{\frac{-145000}{8.31\times1493}}[/tex]
[tex]D=1.310\times10^{-15}\ m^2/s[/tex]
Now, we need to calculate the D at 1273 K
[tex]D=1.310\times10^{-15}\ e^{\frac{-145000}{8.31\times1273}}[/tex]
[tex]D=1.460\times10^{-21}\ m^2/s[/tex]
We need to calculate the diffusion flux
[tex]J=-D\dfrac{dc}{dx}[/tex]
[tex]J=-1.460\times10^{-21}\times(-500)[/tex]
[tex]J=7.3\times10^{-19}\ kg/m^2-s[/tex]
Hence, The diffusion flux is [tex]7.3\times10^{-19}\ kg/m^2-s[/tex].