The steady-state diffusion flux through a metal plate is 7.8 × 10-8 kg/m2-s at a temperature of 1220˚C ( 1493 K) and when the concentration gradient is -500 kg/m4. Calculate the diffusion flux at 1000˚C ( 1273 K) for the same concentration gradient and assuming an activation energy for diffusion of 145,000 J/mol.

Respuesta :

Answer:

The diffusion flux is [tex]7.3\times10^{-19}\ kg/m^2-s[/tex].

Explanation:

Given that,

Diffusion flux [tex] J =7.8\times10^{-8}\ kg/m^2-s[/tex]

Temperature = 1220°C =1493 K

Concentration gradient = -500 kg/m⁴

Diffusion energy = 145000 J/mol

We need to calculate the diffusion coefficient

Using formula of diffusion flux

[tex]J = -D_{0}\dfrac{dc}{dx}[/tex]

[tex]D_{0}=\dfrac{-J}{\dfrac{dc}{d}}[/tex]

Where, J = diffusion flux

[tex]D_{0}[/tex] = pre exponential factor

[tex]\dfrac{dc}{dx}[/tex] = Concentration gradient

Put the value into the formula

[tex]D_{0}=\dfrac{-7.8\times10^{-8}}{-500 }[/tex]

[tex]D_{0}=1.56\times10^{-10}\ m^2/s[/tex]

Using formula of diffusion coefficient formula

[tex]D=D_{0}\ e^{\frac{-E}{RT}}[/tex]

Where, D = diffusion coefficient

R = gas constant

T = temperature

Put the value of D₀ into the formula

[tex]D=1.56\times10^{-10}\ e^{\frac{-145000}{8.31\times1493}}[/tex]

[tex]D=1.310\times10^{-15}\ m^2/s[/tex]

Now, we need to calculate the D at 1273 K

[tex]D=1.310\times10^{-15}\ e^{\frac{-145000}{8.31\times1273}}[/tex]

[tex]D=1.460\times10^{-21}\ m^2/s[/tex]

We need to calculate the diffusion flux

[tex]J=-D\dfrac{dc}{dx}[/tex]

[tex]J=-1.460\times10^{-21}\times(-500)[/tex]

[tex]J=7.3\times10^{-19}\ kg/m^2-s[/tex]

Hence, The diffusion flux is [tex]7.3\times10^{-19}\ kg/m^2-s[/tex].

ACCESS MORE