The speed of sound in air is proportional to the square root of the absolute temperature. If the speed of sound is 349 m/s when the air temperature is 20 °C, what is the temperature of the air when the speed of sound is 340 m/s? Give your answer in °C, K, °F, and R (Rankine).

Respuesta :

Given:

Let the speed of sound be represented by 'v' then

v ∝ [tex]\sqrt{T}[/tex]              (1)

[tex]v_{1}[/tex] = 349 m/s

[tex]v_{2}[/tex] = 340 m/s

[tex]T_{1}[/tex] = 20°C = 273+20 = 293 K

Formulae used:

1)  °C = K + 273

2) K = °C - 273

3) °F = 1.8°C + 32

4) °R = °F + 459.67

Solution:

From eqn (1),

[tex]\frac{v_{1}}{v_{2}} = \sqrt{\frac{T_{1}}{T_{2}}}[/tex]

[tex]T_{2}[/tex] = [tex]T_{2} = (\frac{v_{2}}{v_{1}})^{2}T_{1}[/tex]

[tex]T_{2} = (\frac{340}{349})^{2}{293}[/tex] = 278.08 K

Now, Usinf formula (1), (2), (3) and (4) respectively, we get

1) T = 293 K

2) T = 293 -278.8 = 5.08°C

3) T = 1.8(5.08) + 32=41.14°F

4) T = 41.14 + 459.67 = 500.81°R

RELAXING NOICE
Relax