Given:
Let the speed of sound be represented by 'v' then
v ∝ [tex]\sqrt{T}[/tex] (1)
[tex]v_{1}[/tex] = 349 m/s
[tex]v_{2}[/tex] = 340 m/s
[tex]T_{1}[/tex] = 20°C = 273+20 = 293 K
Formulae used:
1) °C = K + 273
2) K = °C - 273
3) °F = 1.8°C + 32
4) °R = °F + 459.67
Solution:
From eqn (1),
[tex]\frac{v_{1}}{v_{2}} = \sqrt{\frac{T_{1}}{T_{2}}}[/tex]
[tex]T_{2}[/tex] = [tex]T_{2} = (\frac{v_{2}}{v_{1}})^{2}T_{1}[/tex]
[tex]T_{2} = (\frac{340}{349})^{2}{293}[/tex] = 278.08 K
Now, Usinf formula (1), (2), (3) and (4) respectively, we get
1) T = 293 K
2) T = 293 -278.8 = 5.08°C
3) T = 1.8(5.08) + 32=41.14°F
4) T = 41.14 + 459.67 = 500.81°R