Answer:
The rate of enzyme catalyzed reaction will increases by [tex]1.58\times 10^{8}[/tex] times.
Explanation:
According to the Arrhenius equation,
[tex]K=A\times e^{\frac{-Ea}{RT}}[/tex]
[tex]\log K=\log A-\frac{Ea}{2.303\times RT}[/tex]
The expression used with catalyst and without catalyst is,
[tex]\log K_1=\log A-\frac{Ea_1}{2.303\times RT}[/tex]...(1)
[tex]\log K_2=\log A-\frac{Ea_2}{2.303\times RT}[/tex]...(2)
On subtracting (2) from (1)
[tex]\log \frac{K_2}{K_1}=\frac{Ea_1-Ea_2}{2.303RT}[/tex]
where,
[tex]K_2[/tex] = rate of reaction with catalyst
[tex]K_1[/tex] = rate of reaction without catalyst
[tex]Ea_2[/tex] = activation energy with catalyst = 29.3 kJ/mol = 29300 J/mol
[tex]Ea_1[/tex] = activation energy without catalyst = 75.3 kJ/mol=75300 J/mol
R = gas constant =8.314 J /mol K
T = temperature = [tex]20^oC=273+20=293K[/tex]
Now on substituting all the values in the above formula, we get
[tex]\log \frac{K_2}{K_1}=\frac{75300 kJ/mol-29300 kJ/mol}{2.303\times 8.314 J/mol K\times 293}=1.58\times 10^{8}[/tex]
The rate of enzyme catalyzed reaction will increases by [tex]1.58\times 10^{8}[/tex] times.