Answer:32.4m/[tex]s^2[/tex]
Explanation:
Given data
[tex]radius\left ( r\right )[/tex]=0.4m
Intial angular velocity[tex]\left ( \omega_0\right )[/tex]=4rad/s
angular acceleration[tex]\left ( \alpha\right )[/tex]=5rad/[tex]s^2[/tex]
angular velocity after 1 sec
[tex]\omega[/tex]=[tex]\omega_0 [/tex]+[tex]\alpha\times\t[/tex]
[tex]\omega[/tex]=4+5[tex]\left ( 1\right )[/tex]
[tex]\omega[/tex]=9rad/s
Velocity of point on the outer surface of disc[tex]\left ( v\right )[/tex]=[tex]\omega_0\timesr[/tex]
v=[tex]9\times0.4[/tex] m/s=3.6m/s
Normal component of acceleration[tex]\left ( a_c\right )[/tex]=[tex]\frac{v^2}{r}[/tex]
[tex]a_c[/tex]=[tex]\frac{3.6\times3.6}{0.4}[/tex]=32.4m/[tex]s^2[/tex]