Answer:y=
Acosx+Bsinx +cosx ln(cosx)+x sinx
Step-by-step explanation:
given equation y''+y=secx
auxiliary equation
[tex]p^2+1=0\\p=\pm i[/tex]
so CF is y=Acosx+Bsinx
now
[tex]y_1(x)=cosx \ \ \ \ y_2(x)=sinx\\{y_1}'(x)=-sinx \ \ \ \ {y_2}'(x)=cosx[/tex]
using wronskian formula
[tex]W=\begin{vmatrix}cosx &sinx \\ -sinx & cosx\end{vmatrix}[/tex]
=[tex]cos^2x+sin^2x=1[/tex]
now f(x)=secx
[tex]u=-\int \frac{f(x)y_2(x)}{W(x)}dx \ and \ v=\int \frac{f(x)y_1(x)}{W(x)}dx[/tex]
[tex]u=-\int \frac{secx\times sinx}{1}dx \ and \ v=\int \frac{secx\times cosx}{1}dx[/tex]
[tex]u=-\int tanx dx \ and \ v=\int {1}dx[/tex]
[tex]u=ln(cosx) \ \ \ and \ \ v=x[/tex]
now particular integrals are
PI=cosx ln(cosx)+x sinx
total solution
y= C.F+P.I
y=Acosx+Bsinx +cosx ln(cosx)+x sinx