Respuesta :

Answer:

[tex]y=\frac{c}{e^{kx}}[/tex]

Step-by-step explanation:

[tex]\frac{\mathrm{d} y}{\mathrm{d} x} =-ky[/tex]

[tex]\frac{\mathrm{d} y}{\mathrm{d} x} +ky=0[/tex]

comparing with equation

[tex]\frac{\mathrm{d} y}{\mathrm{d} x} + Py=Q(x)[/tex]

[tex]I.F.= e^{\int P dx}[/tex]

[tex]I.F.= e^{\int k dx}[/tex]

[tex]I.F.= e^{kx}[/tex]

[tex]y=\frac{1}{I.F.} ( \int {Q(x)}  dx  +c)[/tex]

[tex]y=\frac{1}{e^{kx}} ( \int {0}  dx  +c)[/tex]

[tex]y=\frac{c}{e^{kx}}[/tex]

ACCESS MORE
EDU ACCESS