Respuesta :
Answer:
[tex]\large\boxed{a_n=2(-4)^{n-1}=\dfrac{(-4)^n}{2}}[/tex]
Step-by-step explanation:
The explicit equation of a geometric sequence:
[tex]a_n=a_1r^{n-1}[/tex]
The domain is the set of all Counting Numbers.
We have the first term of [tex]a_1=2[/tex] and the second term of [tex]a_2=-8[/tex].
Calculate the common ratio r:
[tex]r=\dfrac{a_{n-1}}{a_2}\to r=\dfrac{a_2}{a_1}[/tex]
Substitute:
[tex]r=\dfrac{-8}{2}=-4[/tex]
[tex]a_n=(2)(-4)^{n-1}\qquad\text{use}\ \dfrac{a^n}{a^m}=a^{n-m}\\\\a_n=(2\!\!\!\!\diagup^1)\left(\dfrac{(-4)^n}{4\!\!\!\!\diagup_2}\right)\\\\a_n=\dfrac{(-4)^n}{2}[/tex]
Answer:
Step-by-step explanation:
A geometric sequence has a common ratio. in this case the common ratio
r = -8/2 = -4.
The explicit formula is an = 2(-4)^(n-1).