Respuesta :
Answer:
a) 800 keV
b) 25 km
Explanation:
[tex]Strength\ of\ Electric\ field=2\times 10^6\ V/m\\a)\ Potential\ Difference=Strength\ of\ Electric\ field\times Distance\\\Rightarrow Potential\ Difference=Kinetic\ Energy\ =2\times 10^6\times 0.4\\\therefore Energy=0.8\times 10^6\ eV=800\ keV\\[/tex]
[tex]b)\ Potential\ difference=50\ GeV=50\times 10^9\ eV\\Distance=\frac{Potential\ difference}{electric\ field}\\\Rightarrow Distance=\frac{50\times 10^9}{2\times 10^6}\\\Rightarrow Distance=25\times 10^3\ m\\\therefore Distance=25\ km[/tex]
Answer:
a) 800 keV
b) 24.996 km.
Explanation:
(a) we have
[tex]\large \Delta K.E=q\Delta V[/tex] .............(1)
where,
[tex]\large \Delta K.E[/tex] = Change in kinetic energy
[tex]q[/tex] = charge of an electron
[tex]\Delta V[/tex] = Potential difference
also
[tex]\large E=\frac{V}{d}[/tex] .......(2)
E = electric field
d = distance traveled
Now from (1) and (2) we have,
[tex]\large \Delta K. E=qV=qEd[/tex]
substituting the values in the above equation, we get
[tex]\large \Delta K. E=(1.6\times 10^{-19}C)(2\times 10^6V/m)(0.400m)(\frac{1eV}{1.6\times 10^{-19}J})(\frac{1keV}{1000eV})[/tex]
[tex]\large \Delta K. E=800keV[/tex]
Thus, the energy gained by the electron is 800 keV if it is accelerated over a distance of 0.400 m.
(b) Using the equation (1), we have
[tex]\large d=\frac{\Delta K.E}{qE}[/tex]
[tex]\large d=\frac{(50\times 10^9eV)}{(1.6\times 10^{-19C})(2\times 10^6V/m)}(\frac{1.6\times 10^{-19}J}{1eV})[/tex]
or
[tex]\large d=2.4996\times 10^4m[/tex]
or
[tex]\large d=24.996\times 10^3m=24.996km[/tex]
Thus, to gain 50.0 GeV of energy the electron must be accelerated over a distance of 24.996 km.