Respuesta :
Answer:
Explanation:
Given data
Temprature of air=[tex]25^{\circ}[/tex]
pressure =1 atm
velocity(V)=8m/s
From the table for air at [tex]25^{\circ}[/tex] and 1 atm
kinematic viscosity[tex]\left ( \nu\right )=1.562\times 10^{-5} m^{2}/s[/tex]
Reynolds number for turbulent flow[tex]=5\times 10^{5}[/tex]
and Re.no.=[tex]\frac{V \times X}{\nu }[/tex]
therefore length where turbulent flows start is
X=[tex]\frac{\left ( Re.no.\right )\times \nu }{V}[/tex]
X=0.976 m
Thickness of boundary layer is given by
[tex]\delta _x=\frac{5X}{\sqrt{Re_x}}[/tex]
[tex]\delta _x=\frac{5\times 0.976}{\sqrt{5\times 10^5}}[/tex]
[tex]\delta _x=6.901mm[/tex]
for water
kinematic viscosity[tex]\left ( \nu\right )=8.91\times 10^{-7} m^{2}/s[/tex]
Reynolds number for turbulent flow[tex]=5\times 10^{5}[/tex]
and Re.no.=[tex]\frac{V \times X}{\nu }[/tex]
therefore length where turbulent flows start is
X=[tex]\frac{\left ( Re.no.\right )\times \nu }{V}[/tex]
X=0.055m
Thickness of boundary layer is given by
[tex]\delta _x=\frac{5X}{\sqrt{Re_x}}[/tex]
[tex]\delta _x=\frac{5\times 0.055}{\sqrt{5\times 10^5}}[/tex]
[tex]\delta _x=0.3889mm[/tex]
Answer:
The thickness of air flow will be 0.923 m
The thickness of water flow will be 0.056 m.
Explanation:
For flow over flat plate, the flow becomes turbulent at the reynold number value of 5 x 10^5
Reynold's number is given as:
Re = ρvx/μ
where,
ρ = density of fluid
v = velocity of flow
x = thickness of boundary layer
Re = reynold's number
For Air:
ρ = 1.225 kg/m^3
μ = 1.81 x 10^(-5) Pa.s
v = 8 m/s
therefore,
Re = 5 x 10^5 = (1.225 kg/m^3)(8 m/s)(x)/1.81 x 10^(-5) Pa.s
x = 0.923 m
For Water:
ρ = 997 kg/m^3
μ = 8.9 x 10^(-4) Pa.s
v = 8 m/s
therefore,
Re = 5 x 10^5 = (997 kg/m^3)(8 m/s)(x)/8.9 x 10^(-4) Pa.s
x = 0.056 m