A fluid with a relative density of 0.9 flows in a pipe which is 12 m long and lies at an angle of 60° to the horizontal At the top, the pipe has a diameter of 30 mm and a pressure gauge indicates a pressure of 860 kPa. At the bottom the diameter is 85 mm and a pressure gauge reading is 1 MPa. Assume the losses are negligible and determine the flov rate. Does the flow direction matter?

Respuesta :

Answer:

[tex]Q=7.3\times 10^{-3} m^3/s[/tex]

Explanation:

Given that

At top[tex]d_2=30 mm,P_2=860 KPa ,P_1=1000 KPa,d_1=85 mm[/tex]

[tex]\rho =900\dfrac{Kg}{m^3}[/tex]

We know that

[tex]\dfrac{P_1}{\rho g}+\dfrac{V_1^2}{2g}+Z_1=\dfrac{P_2}{\rho g}+\dfrac{V_2^2}{2g}+Z_2[/tex]

[tex]A_1V_1=A_2V_2[/tex]

[tex]\frac{V_1}{V_2}=\left(\dfrac{d_2}{d_1}\right)^2[/tex]

[tex]\frac{V_1}{V_2}=\left(\dfrac{30}{85}\right)^2[/tex]

[tex]V_2=8.02V_1[/tex]

[tex]Z_2=12 sin60^{\circ}[/tex]

[tex]\dfrac{1000\times 1000}{900\times 9.81}+\dfrac{V_1^2}{2\times 9.81}+0=\dfrac{860\times 1000}{900\times 9.81 }+\dfrac{V_2^2}{2\times 9.81}+12 sin60^{\circ}[/tex]

So [tex]V_1=1.30[/tex]m/s

We know that flow rate Q=AV

[tex]Q=A_1V_1[/tex]

By putting the values

[tex]A_1=\dfrac{\pi}{4}d^2[/tex]

[tex]Q=7.3\times 10^{-3} m^3/s[/tex]

To find the flow rate we do not need the direction of flow,because we are just doing balancing of energy at inlet and at the exits of pipe.

Otras preguntas

ACCESS MORE