Respuesta :
Answer:
a)f=2.25 Hz
b)Time period T=.144 s
c)tex]V_{max}[/tex]=0.42 m/s
d)Phase angle Ф=87.3°
e) [tex]a_{max}=6.0041 [tex]\frac{m}{s^2}[/tex]
Explanation:
a)
Natural frequency
[tex]\omega _n=\sqrt {\dfrac{K}{m}}[/tex]
[tex]\omega _n=\sqrt {\dfrac{150}{0.75}}[/tex]
[tex]\omega _n[/tex]=14.14 rad/s
w=2πf
⇒f=2.25 Hz
b) Time period
[tex]=\dfrac{2π}{\omega _n}[/tex]
T=[tex]\frac{1}{f}[/tex]
Time period T=.144 s
c)Displacement equation
[tex]x=Acos\omega _nt+Bsin\omega _nt[/tex]
Boundary condition
t=o,x=0.03 m
t=0,v=.02m/s , V=[tex]\frac{dx}{dt}[/tex]
Now by using these above conditions
A=0.03,B=0.0014
x=0.03 cos14.14 t+0.0014 sin14.14 t
⇒x=0.03003sin(14.14t+87.3)
[tex]V_{max}=\omega_n X_{max}[/tex]
[tex]V_{max}=14.14\times 0.03003[/tex]=0.42 m/s
d)
Phase angle Ф=87.3°
e)
Maximum acceleration
[tex]a_{max}=(\omega _n )^2X_{max}[/tex]
[tex]a_{max}=(14.14)^20.03003[/tex]=6.0041 [tex]\frac{m}{s^2}[/tex]
Answer:
A. 2.249 hz
B. 0.45 s
C. 0.424 m/s
D. 66⁰
E. 6 m/s^2
Explanation:
Step 1: identify the given parameters
mass of the block (m)= 0.75kg
stiffness constant (k) = 150N/m
Amplitude (A) = 3cm = 0.03m
upward velocity (v) = 2cm/s
Step 2: calculate the natural frequency (F)by applying relevant formula in S.H.M
[tex]f=\frac{1}{2\pi } \sqrt \frac{k}{m}[/tex]
[tex]f=\frac{1}{2\pi } \sqrt \frac{150}{0.75}[/tex]
f = 2.249 hz
Step 3: calculate the period of the oscillation (T)
[tex]period (T) = \frac{1}{frequency}[/tex]
[tex]T = \frac{1}{2.249} (s)[/tex]
T = 0.45 s
Step 4: calculate the maximum velocity,[tex]V_{max}[/tex]
[tex]V_{max} = A\sqrt{\frac{k}{m} }[/tex]
A is the amplitude of the oscilation
[tex]V_{max} = 0.03\sqrt{\frac{150}{0.75} }[/tex]
[tex]V_{max} = 0.424(\frac{m}{s})[/tex]
Step 5: calculate the phase angle, by applying equation in S.H.M
[tex]X = Acos(\omega{t} +\phi)[/tex]
where X is the displacement; calculated below
Displacement = upward velocity X period of oscillation
[tex]displacement (X) = vt (cm)[/tex]
X = (2cm/s) X (0.45 s)
X = 0.9 cm = 0.009m
where [tex]\omega[/tex] is omega; calculated below
[tex]\omega=\sqrt{\frac{k}{m} }[/tex]
[tex]\omega=\sqrt{\frac{150}{0.75} }[/tex]
[tex]\omega= 14.142[/tex]
[tex]\phi = phase angle[/tex]
Applying displacement equation in S.H.M
[tex]X = Acos(\omega{t}+\phi)[/tex]
[tex]0.009 = 0.03cos(14.142 X 0.45+\phi)[/tex]
[tex]cos(6.364+\phi) = \frac{0.009}{0.03}[/tex]
[tex]cos(6.364+\phi) = 0.3[/tex]
[tex](6.364+\phi) = cos^{-1}(0.3)[/tex]
[tex](6.364+\phi)= 72.5⁰[/tex]
[tex]6.364+\phi =72.5⁰[/tex]
[tex]\phi[/tex] =72.5 -6.364
[tex]\phi[/tex] =66.1⁰
Phase angle, [tex]\phi[/tex] ≅66⁰
Step 6: calculate the maximum acceleration, [tex]a_{max}[/tex]
[tex]a_{max} = \omega^{2}A[/tex]
[tex]a_{max}[/tex] = 14.142 X 14.142 X 0.03
[tex]a_{max}[/tex] = 5.999 [tex](\frac{m}{s^{2} })[/tex]
[tex]a_{max}[/tex] ≅ 6 [tex](\frac{m}{s^{2} })[/tex]