A block of mass 0.75 kg is suspended from a spring having a stiffness of 150 N/m. The block is displaced downwards from its equilibrium position through a distance of 3 cm with an upward velocity of 2 cm/sec. Determine: a)- The natural frequency b)-The period of oscillation c)-The maximum velocity d)-The phase angle e)-The maximum acceleration

Respuesta :

Answer:

a)f=2.25 Hz

b)Time period T=.144 s

c)tex]V_{max}[/tex]=0.42 m/s

d)Phase angle Ф=87.3°

e) [tex]a_{max}=6.0041 [tex]\frac{m}{s^2}[/tex]

Explanation:

a)

Natural frequency

  [tex]\omega _n=\sqrt {\dfrac{K}{m}}[/tex]

[tex]\omega _n=\sqrt {\dfrac{150}{0.75}}[/tex]

[tex]\omega _n[/tex]=14.14 rad/s

w=2πf

f=2.25 Hz

b) Time period

[tex]=\dfrac{2π}{\omega _n}[/tex]

T=[tex]\frac{1}{f}[/tex]

 Time period T=.144 s

c)Displacement equation

[tex]x=Acos\omega _nt+Bsin\omega _nt[/tex]

Boundary condition

t=o,x=0.03 m

t=0,v=.02m/s   , V=[tex]\frac{dx}{dt}[/tex]

Now by using these above conditions

A=0.03,B=0.0014

x=0.03 cos14.14 t+0.0014 sin14.14 t

⇒x=0.03003sin(14.14t+87.3)

[tex]V_{max}=\omega_n X_{max}[/tex]

[tex]V_{max}=14.14\times 0.03003[/tex]=0.42 m/s

d)

Phase angle Ф=87.3°

e)

Maximum acceleration

[tex]a_{max}=(\omega _n )^2X_{max}[/tex]

[tex]a_{max}=(14.14)^20.03003[/tex]=6.0041 [tex]\frac{m}{s^2}[/tex]

Answer:

A. 2.249 hz

B. 0.45 s

C. 0.424 m/s

D. 66⁰

E. 6 m/s^2

Explanation:

Step 1: identify the given parameters

mass of the block (m)= 0.75kg

stiffness constant (k) = 150N/m

Amplitude (A) = 3cm = 0.03m

upward velocity (v) = 2cm/s

Step 2: calculate the natural frequency (F)by applying relevant formula in S.H.M

[tex]f=\frac{1}{2\pi } \sqrt \frac{k}{m}[/tex]

[tex]f=\frac{1}{2\pi } \sqrt \frac{150}{0.75}[/tex]

f = 2.249 hz

Step 3: calculate the period of the oscillation (T)

[tex]period (T) = \frac{1}{frequency}[/tex]

[tex]T = \frac{1}{2.249} (s)[/tex]

T = 0.45 s

Step 4: calculate the maximum velocity,[tex]V_{max}[/tex]

[tex]V_{max} = A\sqrt{\frac{k}{m} }[/tex]

A is the amplitude of the oscilation

[tex]V_{max} = 0.03\sqrt{\frac{150}{0.75} }[/tex]

[tex]V_{max} = 0.424(\frac{m}{s})[/tex]

Step 5: calculate the phase angle, by applying equation in S.H.M

[tex]X = Acos(\omega{t} +\phi)[/tex]

where X is the displacement; calculated below

Displacement = upward velocity X period of oscillation

[tex]displacement (X) = vt (cm)[/tex]

X = (2cm/s) X (0.45 s)

X = 0.9 cm = 0.009m

where [tex]\omega[/tex] is omega; calculated below

[tex]\omega=\sqrt{\frac{k}{m} }[/tex]

[tex]\omega=\sqrt{\frac{150}{0.75} }[/tex]

[tex]\omega= 14.142[/tex]

[tex]\phi = phase angle[/tex]

Applying displacement equation in S.H.M

[tex]X = Acos(\omega{t}+\phi)[/tex]

[tex]0.009 = 0.03cos(14.142 X 0.45+\phi)[/tex]

[tex]cos(6.364+\phi) = \frac{0.009}{0.03}[/tex]

[tex]cos(6.364+\phi) = 0.3[/tex]

[tex](6.364+\phi) = cos^{-1}(0.3)[/tex]

[tex](6.364+\phi)= 72.5⁰[/tex]

[tex]6.364+\phi =72.5⁰[/tex]

[tex]\phi[/tex] =72.5 -6.364

[tex]\phi[/tex] =66.1⁰

Phase angle, [tex]\phi[/tex] ≅66⁰

Step 6: calculate the maximum acceleration, [tex]a_{max}[/tex]

[tex]a_{max} = \omega^{2}A[/tex]

[tex]a_{max}[/tex] = 14.142 X 14.142 X 0.03

[tex]a_{max}[/tex] = 5.999 [tex](\frac{m}{s^{2} })[/tex]

[tex]a_{max}[/tex] ≅ 6 [tex](\frac{m}{s^{2} })[/tex]

ACCESS MORE