Respuesta :
Answer: Sample size of 73 is needed so that the confidence interval will have a margin of error of 0.082
Step-by-step explanation:
The formula to calculate the margin of error for population proportion is given by :-
[tex]E=z_{\alpha/2}\times\sqrt{\dfrac{p(1-p)}{n}}[/tex]
Given : The proportion of operations result in complications : [tex]p= 0.08[/tex]
Significance level : [tex]\alpha = 1-0.99=0.01[/tex]
Critical value =[tex]z_{0.005}=2.576[/tex] [By standard normal distribution table]
Margin of error : E= 0.082
Substitute all the value in the above formula, we get
[tex]0.082=2.576\times\sqrt{\dfrac{0.08(0.92)}{n}}\\\\\Rightarrow\ 0.03183=\sqrt{\dfrac{0.0736}{n}} [/tex]
Squaring both sides , we get
[tex]0.0010131489=\dfrac{0.0736}{n}\\\\\Rightarrow\ n=\dfrac{0.0736}{0.0010131489}=72.644800779\approx73[/tex]
Hence, the required sample size = 73