Answer:
(d) increase by 100%
Explanation:
[tex]m_{i}[/tex] = initial mass of earth = m
[tex]m_{f}[/tex] = final mass of earth = (0.5) m
[tex]R_{i}[/tex] = initial radius of earth = R
[tex]R_{f}[/tex] = final radius of earth = (0.5) R
[tex]g_{i}[/tex] = initial acceleration due to gravity of earth = g
[tex]g_{f}[/tex] = final acceleration due to gravity of earth
initial acceleration due to gravity of earth is given as
[tex]g_{i} = \frac{Gm_{i}}{R_{i}^{2}}[/tex] Eq-1
Final acceleration due to gravity of earth is given as
[tex]g_{f} = \frac{Gm_{f}}{R_{f}^{2}}[/tex] Eq-2
Dividing eq-1 by eq-2
[tex]\frac{g_{i}}{g_{f}} = \frac{m_{i}}{m_{f}}\frac{R_{f}^{2}}{R_{i}^{2}}[/tex]
inserting the values
[tex]\frac{g}{g_{f}} = \frac{m_{i}}{(0.5)m_{i}}\frac{(0.5)^{2}R_{i}^{2}}{R_{i}^{2}}[/tex]
[tex]g_{f}[/tex] = 2 g
So there is 100% increase