Respuesta :
Answer:
[tex]\dot{m_{2}}=0.865 kg/s[/tex]
Explanation:
[tex]\dot{m_1}= 0.5kg/s[/tex]
from steam tables , at 250 kPa, and at
T₁ = 80⁰C ⇒ h₁ = 335.02 kJ/kg
T₂ = 20⁰C⇒ h₂ = 83.915 kJ/kg
T₃ = 42⁰C ⇒ h₃ = 175.90 kJ/kg
we know
[tex]\dot{m_{in}}=\dot{m_{out}}[/tex]
[tex]\dot{m_{1}}+\dot{m_{2}}=\dot{m_{3}}[/tex]
according to energy balance equation
[tex]\dot{m_{in}}h_{in}=\dot{m_{out}}h_{out}[/tex]
[tex]\dot{m_{1}}h_{1}+\dot{m_{2}}h_{2}=\dot{m_{3}}h_{3}[/tex]
[tex]\dot{m_{1}}h_{1}+\dot{m_{2}}h_{2}=(\dot{m_{1}}+\dot{m_{2}})h_{3}\\(0.5\times 335.02)+(\dot{m_{2}}\times 83.915)=(0.5+\dot{m_{2}})175.90\\\dot{m_{2}}=0.865 kg/s[/tex]
The mass flow rate of the cold-water stream ( m₂ ) = 0.865 kg/s
Given data :
m₁ = 0.5 kg/s
m₂ = ?
From steam tables
At 250 kPa
at T1 = 80℃ , h₁ = 335.02 kJ/kg
at T2 = 20℃, h₂ = 83.915 kJ/kg
at T3 = 42℃, h₃ = 175.90 kJ/kg
Determine the mass flow rate of the cold water stream
Given that :
Min = Mout also m₁ + m₂ = m₃
applying the principle of energy balance
M₁h₁ + M₂ h₂ = ( m₁ + m₂ ) h₃ ---- ( 1 )
insert values into equation ( 1 )
m₂ = 0.865 kg/s
Hence In conclusion The mass flow rate of the cold-water stream ( m₂ ) = 0.865 kg/s
Learn more about mass flow rate : https://brainly.com/question/16014998