Answer:
-1/4 meter per minute
Step-by-step explanation:
Since, the volume of a cube,
[tex]V=r^3[/tex]
Where, r is the edge of the cube,
Differentiating with respect to t ( time )
[tex]\frac{dV}{dt}=3r^2\frac{dr}{dt}[/tex]
Given, [tex]\frac{dV}{dt}=-3\text{ cubic meters per minute}[/tex]
Also, V = 8 ⇒ r = ∛8 = 2,
By substituting the values,
[tex]-3=3(2)^2 \frac{dr}{dt}[/tex]
[tex]-3=12\frac{dr}{dt}[/tex]
[tex]\implies \frac{dr}{dt}=-\frac{3}{12}=-\frac{1}{4}[/tex]
Hence, the rate of change of an edge is -1/4 meter per minute.