Answer:
[tex]F_2 = 1.10 \mu N[/tex]
Explanation:
As we know that the electrostatic force is a based upon inverse square law
so we have
[tex]F = \frac{kq_1q_2}{r^2}[/tex]
now since it depends inverse on the square of the distance so we can say
[tex]\frac{F_1}{F_2} = \frac{r_2^2}{r_1^2}[/tex]
now we know that
[tex]r_2 = 18.2 mm[/tex]
[tex]r_1 = 12.2 mm[/tex]
also we know that
[tex]F_1 = 2.45 \mu N[/tex]
now from above equation we have
[tex]F_2 = \frac{r_1^2}{r_2^2} F_1[/tex]
[tex]F_2 = \frac{12.2^2}{18.2^2}(2.45\mu N)[/tex]
[tex]F_2 = 1.10 \mu N[/tex]