What is the total entropy change if a 0.280 efficiency engine takes 3.78E3 J of heat from a 3.50E2 degC reservoir and exhausts it to a 42.4 degC reservoir?

Respuesta :

Answer:

[tex]\Delta S=1.69J/K[/tex]

Explanation:

We know,

[tex]\eta=1-\frac{T_2}{T_1}=1-\frac{Q_2}{Q_1}[/tex]      ..............(1)

where,

η = Efficiency of the engine

T₁ = Initial Temperature

T₂ = Final Temperature

Q₁ = Heat available initially

Q₂ = Heat after reaching the temperature T₂

Given:

η =0.280

T₁ = 3.50×10² °C = 350°C = 350+273 = 623K

Q₁ = 3.78 × 10³ J

Substituting the values in the equation (1) we get

[tex]0.28=1-\frac{Q_2}{3.78\times 10^{3}}[/tex]

or

[tex]\frac{Q_2}{3.78\times 10^3}=0.72[/tex]

or

[tex]Q_2=3.78\times 10^3\times0.72[/tex]

⇒ [tex]Q_2 =2.721\times 10^3 J[/tex]

Now,

The entropy change ([tex]\Delta S[/tex]) is given as:

[tex]\Delta S=\frac{\Delta Q}{T_1}[/tex]

or

[tex]\Delta S=\frac{Q_1-Q_2}{T_1}[/tex]

substituting the values in the above equation we get

[tex]\Delta S=\frac{3.78\times 10^{3}-2.721\times 10^3 J}{623K}[/tex]

[tex]\Delta S=1.69J/K[/tex]

ACCESS MORE