Answer:
[tex]\Delta S=1.69J/K[/tex]
Explanation:
We know,
[tex]\eta=1-\frac{T_2}{T_1}=1-\frac{Q_2}{Q_1}[/tex] ..............(1)
where,
η = Efficiency of the engine
T₁ = Initial Temperature
T₂ = Final Temperature
Q₁ = Heat available initially
Q₂ = Heat after reaching the temperature T₂
Given:
η =0.280
T₁ = 3.50×10² °C = 350°C = 350+273 = 623K
Q₁ = 3.78 × 10³ J
Substituting the values in the equation (1) we get
[tex]0.28=1-\frac{Q_2}{3.78\times 10^{3}}[/tex]
or
[tex]\frac{Q_2}{3.78\times 10^3}=0.72[/tex]
or
[tex]Q_2=3.78\times 10^3\times0.72[/tex]
⇒ [tex]Q_2 =2.721\times 10^3 J[/tex]
Now,
The entropy change ([tex]\Delta S[/tex]) is given as:
[tex]\Delta S=\frac{\Delta Q}{T_1}[/tex]
or
[tex]\Delta S=\frac{Q_1-Q_2}{T_1}[/tex]
substituting the values in the above equation we get
[tex]\Delta S=\frac{3.78\times 10^{3}-2.721\times 10^3 J}{623K}[/tex]
[tex]\Delta S=1.69J/K[/tex]